In this paper, we propose a space partitioning technique for swarm robots by using the Centroidal Voronoi Tessellation. The proposed method consists of two parts such as space partition and collision avoidance. The space partition for searching a given space is carried out by a density function which is generated by some accidents. The collision avoidance is implemented by the potential field method. Finally, the numerical experiments show the effectiveness and feasibility of the proposed method.
This study aims to propose the concept design of oil spill protection robot which can rapidly intervene to control the oil spillage situation at the sea. Taking into account the fact that a huge amount of oil is transported trans-continentally by oil tanker, none of industrialized countries are completely safe from the marine oil spill which results in social, economical and ecological damages to their communities. The employment of double hull-oil tanker, pipe line transporting can be most safe way. Yet complete prevention of oil spill is probably not realistic. Accordingly the alternative solution to control marine oil spill and minimize the damages caused by the incident using intelligent robot technology based on swarm control method is proposed. The main features of oil spill protection(OSP) robot is explained via following three perspectives. Firstly, from functional point of view, OSP robot system safely and efficiently replaces oil boom installation manually conducted by human workers with intelligent robot technology based on swarm control theory. For second, its modular architecture brings efficient storage of main components including oil boom and facilitates maintenance. For the last, its geometric form and shape enables whole system to be installed to helicopter, boat or oil tanker itself with ease and to rapidly deploy the units to the oil spill area.
로봇은 군사 분야로까지 활용 범위를 넓히며 다가올 미래전에서 감시경계, 적군 탐지 등 중요한 임무를 맡게 될 것으로 전망된다. 군집 로봇은 다수라는 장점으로 단일 로봇이 수행하기 어렵거나 오랜 시간이 소요된 임무를 보다 효율적으로 수행할 수 있다. 상호 간 인지 및 협업이 필수인 군집 로봇은 방대한 데이터를 주고 받으며, 이로 인해 SW의 검증이 점점 더 어려워지고 있다. 임무 검증의 신뢰성을 높이기 위해 사용하는 Hardware-in-the-loop simulation은 복잡한 군집 로봇의 SW 검증을 가능하게 하나, HILS 장치와 시뮬레이터 간 주고 받는 검증 데이터의 양이 검증 대상 시스템 수에 따라 기하급수적으로 증가하여 통신 과부하가 발생할 수 있다. 본 논문에서는 군집 로봇의 임무 검증에서 발생하는 통신 과부하 문제를 해소하기 위해 디지털 트윈 기반의 통신 최적화 기법을 제안한다. 제안하는 Digital Twin based Multi HILS Framework 하에서 Network DT은 Network Controller 알고리즘을 통해 임무 시나리오에 따라 각 로봇에게 네트워크 자원을 효율적으로 할당할 수 있으며, 군집에 참여하는 개별 로봇들이 요구하는 Sensor Generation Rate를 모두 만족시킬 수 있음을 확인하였다. 또한 데이터 전송에 대한 실험 결과 패킷 손실 비율을 기존 15.7%에서 약 0.2%로 감소시킬 수 있었다.
Particle swarm optimization (PSO) is employed to train fuzzy-neural networks (FNN), which can be employed as an important building block in real life robot systems, controlled by voice-based commands. The FNN is also trained to capture the user spoken directive in the context of the present performance of the robot system. The system has been successfully employed in a real life situation for navigation of a mobile robot.
군집 로봇(swarm robots)이 같은 작업 환경에 존재할 때, 우리는 어떤 임무를 수행하기 위한 로봇들을 먼저 결정해야 한다. 이런 로봇들의 협조 행동을 제어하기 위한 연구들이 많이 있었다. 이런 군집 로봇 시스템을 사용함으로써 얻는 이점은 협조 행동을 통해서 임무 수행의 적응성과 융통성이 증가하는 특성이라 할 수 있다. 침입자가 발견 되었을 때 군집 로봇은 효율적인 포위를 위해서 침입자의 이동 경로를 예상하면서 다양한 경로를 통해서 침입자에게 접근, 포위해야 한다. 본논문에서는 2차원 맵에서의 군집 로봇의 효율적인 포위 방법과 분산 이동 알고리즘을 제안한다.
본 논문에서는 군집 로봇의 동시적 위치 추정 및 지도 작성 시스템을 제안하였다. 로봇은 실험환경에서 주변 환경을 인식하기 위해 초음파센서와 비젼 센서를 이용하였다. 실험환경을 3개의 영역으로 분할하였고, 로봇은 각 영역에서 초음파 센서로 주변 환경에 대한 거리 정보를 측정하였고, SURF 알고리즘을 이용하여 비젼 센서로부터 입력받은 영상과 landmark의 특징점을 정합하여 랜드마크를 인식하였다. 제안된 방법은 센서값들에 대한 오차에 민감하지 않고 실험환경에 비교적 정확한 지도를 작성함으로써 응용 가능성을 증명하였다.
In this paper, we develop the path planning algorithm using the improved Dijkstra algorithm and the particle swarm optimization. To get the optimal path, at first we construct the MAKLINK on the world environment and then make a graph associated with the MAKLINK. From the graph, we obtain the Dijkstra path between the starting point and the destination point. From the optimal path, we search the improved Dijkstra path using the graph. Finally, applying the particle swarm optimization to the improved Dijkstra path, we obtain the optimal path for the mobile robot. It turns out that the proposed method has better performance than the result in [1].
In this paper, we propose the novel behavior control algorithm by using the efficient searching method based on the characteristic of the swarm robots in unknown space. The proposed method consists of identifying the position and moving state of a robot by the dynamic modelling of a wheel drive vehicle, and planing behavior control rules of the swarm robots based on the sensor range zone. The cooperative search for unknown space is carried out by the proposed behavior control. Finally, some experiments show the effectiveness and the feasibility of the proposed method.
Passive dynamic walking exhibits humanoid and energy efficient gaits. However, optimal design of passive walker at multi-variable level is not well studied yet. This paper presents a Chaotic Particle Swarm Optimization (CPSO) algorithm and applies it to the optimal design of flexible passive walker. Hip torsional stiffness and damping were incorporated into flexible biped walker, to imitate passive elastic mechanisms utilized in human locomotion. Hybrid dynamics were developed to model passive walking, and period-one gait was gained. The parameters global searching scopes were gained after investigating the influences of structural parameters on passive gait. CPSO were utilized to optimize the flexible passive walker. To improve the performance of PSO, multi-scroll Jerk chaotic system was used to generate pseudorandom sequences, and chaotic disturbance would be triggered if the swarm is trapped into local optimum. The effectiveness of CPSO is verified by comparisons with standard PSO and two typical chaotic PSO methods. Numerical simulations show that better fitness value of optimal design could be gained by CPSO presented. The proposed CPSO would be useful to design biped robot prototype.
본 논문에서는 이동 구간 입자 군집 최적화 (Receding horizon particle swarm optimization; RHPSO) 알고리즘 기반 다개체 로봇 편대 제어 알고리즘의 통계적 성능 분석 결과를 제시한다. 다개체 로봇의 편대 제어 문제는 로봇 간 충돌 회피를 고려할 경우, 구속 조건이 있는 비선형 최적화 문제로 정의될 수 있다. 일반적으로 구속 조건이 있는 비선형 최적화 문제는 최적해를 찾는데 많은 시간이 걸리는 문제점이 있다. 이동 구간 입자 군집 최적화 알고리즘은 로봇 편대 제어의 최적화 문제에 대한 준최적해를 빠르게 찾기 위해 제안된 알고리즘이다. 이동 구간 입자 군집 최적화 알고리즘은 알고리즘에 사용되는 후보해의 개수와 세대 수가 증가함에 따라 계산 복잡도가 증가한다. 따라서 최소의 후보해와 세대 수만으로 실시간 제어에 사용될 수 있는 준최적해를 찾는 것이 중요하다. 본 논문에서는 이동 구간 입자 군집 최적화 알고리즘의 후보해의 수와 세대 수에 따른 제어 오차를 비교하였다. 다양한 조건의 시뮬레이션 실험을 통해서 통계적으로 결과를 분석하고, 허용 가능한 편대 오차 범위 내에서 이동 구간 입자 군집 최적화 알고리즘의 최소 후보해의 수와 세대 수를 도출한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.