• Title/Summary/Keyword: swarm control

Search Result 238, Processing Time 0.029 seconds

소형 무인기들의 군집비행을 위한 운영 네트워크 시스템과 PILS 개발 (Development of Operation Network System and Processor in the Loop Simulation for Swarm Flight of Small UAVs)

  • 김성환;조상욱;조성범;박춘배
    • 제어로봇시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.433-438
    • /
    • 2012
  • In this paper, a operation network system equipped with onboard wireless communication systems and ground-based mission control systems is proposed for swarm flight of small UAVs. This operating system can be divided into two networks, UAV communication network and ground control system. The UAV communication network is intend to exchange the informations of navigation, mission and flight status with minimum time delay. The ground control system consisted of mission control systems and UDP network. Proposed operation network system can make a swarm flight of various UAVs, execute complex missions decentralizing mission to several UAVs and cooperte several missions. Finally, PILS environments are developed based on the total operating system.

무리지능을 이용한 복수 무인기 제어 (Control of Multiple UAV's based on Swarm Intelligence)

  • 오수훈
    • 항공우주산업기술동향
    • /
    • 제7권1호
    • /
    • pp.141-152
    • /
    • 2009
  • 복수 무인기의 동시 운용을 통하여 임무 수행 효율성 및 경제성 제고를 꾀할 수 있으며 이를 위해서는 확장성이 용이한 제어 알고리듬을 필요로 하게 되는데 유연성, 강건성, 분산형 제어 및 자기조직화의 특징을 갖는 무리 지능이 현실적인 대안으로 각광받고 있다. 본 논문에서는 무리 지능의 특징과 이를 복수 무인기 제어에 응용함으로써 정찰, 경로 계획, 표적 추적 및 공격 등 다양한 임무를 효율적으로 수행할 수 있음을 시뮬레이션과 시험으로 입증하고 있는 다양한 연구결과를 소개한다.

  • PDF

스프링 댐퍼 임피던스 특성을 이용한 네트워크 기반의 군집 로봇의 경로 제어 기법 (Path Control Method of Networked Swarm Robot Systems using Spring Damper Impedance Features)

  • 김성욱;김동성
    • 제어로봇시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.61-68
    • /
    • 2010
  • This paper proposes networked swarm robotic systems with group based control scheme using spring damper impendence feature. The proposed algorithm is applied to keep system arrangement in unexpected situations based on the spring-damper impedance and fuzzy logic. Using the proposed scheme, each robot overcome collision problems efficiently. The structure of UBSR (UMPC Based Swarm Robot) system consists of user level, cognitive level, and executive level. This structure is designed to easily meet the different configuration requirements for other levels. Simulation results show an availability of the proposed method.

A Self-Organizing Scheme for Swarm Systems

  • Kim, Dong-Hun;Kim, Hong-Pil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2475-2480
    • /
    • 2003
  • A control system design based on coupled nonlinear oscillators (CNOs) for a self-organized swarm system is presented. In this scheme, agents self-organize to flock and arrange group formations through attractive and repulsive forces among themselves using CNOs. Virtual agents are also used to create richer group formation patterns. The objective of the swarm control in this paper is to follow a moving target with a final group formation in the shortest possible time despite some obstacles. The simulation results have shown that the proposed scheme can effectively construct a self-organized multi-agent swarm system capable of group formation and group immigration despite the emergence of obstacles.

  • PDF

역할 모델의 적응적 전환을 통한 협업 채집 무리 로봇의 에너지 효율 향상 (Energy Efficient Cooperative Foraging Swarm Robots Using Adaptive Behavioral Model)

  • 이종현;안진웅;안창욱
    • 제어로봇시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.21-27
    • /
    • 2012
  • We can efficiently collect crops or minerals by operating multi-robot foraging. As foraging spaces become wider, control algorithms demand scalability and reliability. Swarm robotics is a state-of-the-art algorithm on wide foraging spaces due to its advantages, such as self-organization, robustness, and flexibility. However, high initial and operating costs are main barriers in performing multi-robot foraging system. In this paper, we propose a novel method to improve the energy efficiency of the system to reduce operating costs. The idea is to employ a new behavior model regarding role division in concert with the search space division.

군집 로봇 기반 공간 탐색을 위한 행동 제어 알고리즘 (Behavior Control Algorithm for Space Search Based on Swarm Robots)

  • 탁명환;주영훈
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2152-2156
    • /
    • 2011
  • In this paper, we propose the novel behavior control algorithm by using the efficient searching method based on the characteristic of the swarm robots in unknown space. The proposed method consists of identifying the position and moving state of a robot by the dynamic modelling of a wheel drive vehicle, and planing behavior control rules of the swarm robots based on the sensor range zone. The cooperative search for unknown space is carried out by the proposed behavior control. Finally, some experiments show the effectiveness and the feasibility of the proposed method.

Hybrid BFPSO Approach for Effective Tuning of PID Controller for Load Frequency Control Application in an Interconnected Power System

  • Anbarasi, S.;Muralidharan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1027-1037
    • /
    • 2017
  • Penetration of renewable energy sources makes the modern interconnected power systems to have more intelligence and flexibility in the control. Hence, it is essential to maintain the system frequency and tie-line power exchange at nominal values using Load Frequency Control (LFC) for efficient, economic and reliable operation of power systems. In this paper, intelligent tuning of the Proportional Integral Derivative (PID) controller for LFC in an interconnected power system is considered as a main objective. The chosen problem is formulated as an optimization problem and the optimal gain parameters of PID controllers are computed with three innovative swarm intelligent algorithms named Particle Swarm Optimization (PSO), Bacterial Foraging Optimization Algorithm (BFOA) and hybrid Bacterial Foraging Particle Swarm Optimization (BFPSO) and a comparative study is made between them. A new objective function designed with necessary time domain specifications using weighted sum approach is also offered in this report and compared with conventional objective functions. All the simulation results clearly reveal that, the hybrid BFPSO tuned PID controller with proposed objective function has better control performances over other optimization methodologies.

Charging Control Strategy of Electric Vehicles Based on Particle Swarm Optimization

  • Boo, Chang-Jin
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.455-459
    • /
    • 2018
  • In this paper, proposed a multi-channel charging control strategy for electric vehicle. This control strategy can adjust the charging power according to the calculated state-of-charge (SOC). Electric vehicle (EV) charging system using Particle Swarm Optimization (PSO) algorithm is proposed. A stochastic optimization algorithm technique such as PSO in the time-of-use (TOU) price used for the energy cost minimization. Simulation results show that the energy cost can be reduced using proposed method.

Firefly Algorithm을 이용한 군집 이동 로봇의 경로 계획 (Path Planning of Swarm Mobile Robots Using Firefly Algorithm)

  • 김휴찬;김제석;지용관;박장현
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.435-441
    • /
    • 2013
  • A swarm robot system consists of with multiple mobile robots, each of which is called an agent. Each agent interacts with others and cooperates for a given task and a given environment. For the swarm robotic system, the loss of the entire work capability by malfunction or damage to a single robot is relatively small and replacement and repair of the robot is less costly. So, it is suitable to perform more complex tasks. The essential component for a swarm robotic system is an inter-robot collaboration strategy for teamwork. Recently, the swarm intelligence theory is applied to robotic system domain as a new framework of collective robotic system design. In this paper, FA (Firefly Algorithm) which is based on firefly's reaction to the lights of other fireflies and their social behavior is employed to optimize the group behavior of multiple robots. The main application of the firefly algorithm is performed on path planning of swarm mobile robots and its effectiveness is verified by simulations under various conditions.

Feeder Reconfiguration Using Binary Coding Particle Swarm Optimization

  • Wu, Wu-Chang;Tsai, Men-Shen
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권4호
    • /
    • pp.488-494
    • /
    • 2008
  • This paper proposes an effective approach based on binary coding Particle Swarm Optimization (PSO) to identify the switching operation plan for feeder reconfiguration. The proposed method considers the advantages and disadvantages of existing particle swarm optimization method and redefined the operators of PSO algorithm to fit the application field of distribution systems. Shift operator is proposed to construct the binary coding particle swarm optimization for feeder reconfiguration. A typical distribution system of Taiwan Power Company is used in this paper to demonstrate the effectiveness of the proposed method. The test results show that the proposed method can apply to feeder reconfiguration problems more effectively and stably than existing method.