• Title/Summary/Keyword: surge type

Search Result 192, Processing Time 0.023 seconds

Current Driving Type Surge Counter (전류구동형 서지카운터)

  • Lee, B.H.;Ahn, C.H.;Chang, S.H.;Jeong, K.M.;Jeon, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1712-1714
    • /
    • 1997
  • This paper deals with the surge counter drived by lightning and switching currents. In order to install the effective surge protective devices, it is important to find the parameters of incident surges. In this paper, for the purpose of protecting the electronic circuits and counting the occuring frequency, the current driving type surge counter is designed and fabricated. The surge counter consists of surge protective divices, current detector, metal oxide varistor(MOV), rectifier, capacitor, and electromagnetic counter. This surge counter is able to count the occuring frequency of surges and to clamp lightning surge current. To evaluate the performance of the surge counter, impulse voltage and current were applied at the surge counter by the surge generator. As a result, applied surges were exactly counted and clamped.

  • PDF

A Study on Applicability of Stainless Steel Type 316N to the PZR Surge-line of OPR1000 and APR1400 (Type 316N 스테인리스강의 OPR1000 및 APR1400 가압기 밀림관 적용성에 대한 연구)

  • Yoo, One;Jung, Sung-Hoon;Park, Sung-Ho;Sohn, Gap-Heon;Lee, Bong-Sang;Kim, Min-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.287-292
    • /
    • 2008
  • The applicability of stainless steel type 316N to the PZR surge-lines of OPR1000 and APR1400 is investigated. So far, strainless steel type 347 has been used for the OPR1000 surge-lines. The degree of improvement in the leak-before-break(LBB) and component design margin is evaluated when stainless steel type 347 is substituted by type 316N. For the study, the tensile and J-R tests on type 316N and type 347 stainless steels were performed at 316 and the microstructure of both types was examined. Stainless steel type 316N shows the higher values on the stress-strain curves, J-R curves and stress intensity, Sm, compared to those of type 347. Therefore, stainless steel type 316N ensures the higher LBB and component design margins. As a result, this study shows that stainless steel type 316N could substitute type 347 for the surge-lines of OPR1000 and APR1400.

  • PDF

Surge Characteristics Analysis and Reduction Method of Vacuum Circuit Breaker (진공차단기 스위칭 써지 특성 해석 및 저감 방안)

  • Kim, Jong-Gyeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.190-195
    • /
    • 2013
  • Vacuum circuit breaker(VCB) has been widely used for interruption of load current and fault current for high voltage motor in the industrial field. Its arc extinguishing capability is excellent compared to other breakers. But it has the potential to cause multi reignition surge by high extinguishing capability. Surge voltage is generated by the opening and closing of VCB. Multi reignition surge of VCB is steep-fronted waveform. It may have a detrimental effect on the motor winding insulation. So, most of users install a protection device to limit steep-front waveform at the motor terminal or breaker side. So, most of users install a protection device at the motor terminal or breaker side. This protective device is surge absorber(SA) such as ZnO and RC type. In this study, we analyzed whether there is any effect when two type SA is applied to the VCB multi reignition surge. We confirmed that ZnO SA is slightly more effective than RC SA for reduction of multi reignition surge.

Typhoon-surge Characteristics in Relation with the Tide-surge Interaction (조석-해일 비선형성과 관련된 태풍-해일 특성)

  • Kang, Ju Whan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.25-37
    • /
    • 2015
  • Tide-surge interaction during typhoon periods has been analyzed. The quantitative analysis of the Chi-square test shows that the interaction is most prominent at the Southwestern coast whereas the Western and the Southeastern regions are not. Patterns of surge type were divided into two groups, that is, steep type and mild type. Then, the interaction was turned out to be more prominent for mild type data. The weak interaction at the Western region is considered due to negative surges when the south-track typhoons attack. However, the interaction is remarkable when the west-track typhoons attack. The weak interaction at the Southeastern coast is, on the other hand, considered due to abundance of the steep type typhoons. Thus, inundation risk would be so apprehensive at that region because large-scale surge might be caused even at high tide.

Characteristics and Change of Electrode Surface in Moisture Absorption on the Series Gap Surge Arrester (직렬 갭 피뢰기의 흡습시 전극표면의 변화 및 특성)

  • Cho, Han-Gu;Kim, Hyang-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1172-1175
    • /
    • 2003
  • The characteristics and change of electrode surface about Gap type surge arrester for protect DC subway rail were investigated with moisture absorption. Compared that tested about DC/AC discharge commencement voltage, residual voltage, Impulse, square wave impulse for DC rail surge arrester about Gap type surge arrester of moisture absorption state. The AC discharge commencement voltage acted greatly effect of moisture absorption than the DC discharge commencement voltage test.

  • PDF

Transient State Analysis of Faults Caused by Lightning Surge in Distribution Line (뇌서지에 의한 배전선로 고장 시 과도상태 분석)

  • Lim, Sung-Yong;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • This paper presents the voltage characteristics of the various faults after lightning surge hits the overhead grounding wire close to the transformer's secondary side. Based on the modeled distribution system, the cases of the various faults occurred by lightning surge are simulated using EMTP/ATPDraw and maximum overvoltage and RMS voltage according to the distances from the transformer are investigated. As a result, it is seen that the voltage characteristics of faults caused by lightning surge is different depending on the fault type and the voltage characteristics can be used to detect the fault type caused by lightning surge.

An Analysis on Surge Voltage Transfer Phenomena of Transformers by Minor Network (Minor netowrk에 의한 변압기의 충격전압파의 이행현상해석)

  • 이승원
    • 전기의세계
    • /
    • v.20 no.6
    • /
    • pp.7-18
    • /
    • 1971
  • Secondary-side transfer phenomena of primary-side surge voltage in concentric-cylindrical transformers of a high turn-ratio still present a problem in transformer insulation design even in the case of a neutral solid-grounding type. The conventional methods of analyzing them so far are much complicated for practical applications. Therefore, this paper describes a new approach to the analysis of secondary-side transfer phenomena of surge in concentric-cylindrical transformers of high turn-ratio and solid-grounding type. This generalized approach is thought to be more simple with the use of minor network concepts than the conventional one by major network only. The result shows that the secondary-side transfer phenomena of surge voltage could not be neglected even in concentric-cylindrical transformer of high turn-ratio and solid-grounding type, and will be satisfactorily applicable to the design of neutral-solid-grounding type transformers.

  • PDF

A Method for Enhancing Data Transmission Performance in the Power-Line Communication Channel with Low-Voltage Surge Protective Devices (저압용 SPD가 설치된 전력선통신에서 데이터전송 성능 향상)

  • Choi, Jong-Min;Jeon, Tae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.78-85
    • /
    • 2012
  • Low-Voltage power lines should equip surge protection devices which protect electronic equipments and human lives against lightning and abnormal voltages. Data transmission capacity of the power line is determined by frequency characteristics of the surge protective devices. To analyze the effects of surge protective devices on the data transmission performance, various combinations of installation methods are tested which include ZnO varistor elements that is compatible with class I, class II and class III. The result claims that ZnO varistor for class III is found to be one of the main factors that deteriorates the transmission performance. To overcome this problem a serial connection methed between Gap type SPD and ZnO varistor is proposed. With the proposed scheme, laboratory experimental results show that the data transmission performance can be improved up to 91.9[%] with proper SPD combination.

Development of the Lightning Surge Voltage and Current Counters (뇌써지 전압/전류 카운터의 개발)

  • Kil, K.S.;Chang, S.H.;Lee, B.H.;Lee, Y.K.;Lee, B.K.;Ohk, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1882-1884
    • /
    • 1996
  • This paper deals with the lightning surge counter. In order to install the effective surge protective devices, it is important to find the parameters of incident surges. For the purpose of observing the occurrence frequency as a parameter of the amplitude of surge, two type surge counters were designed and fabricated. One is operated by surge currents, and the other is operated by surge voltages. The former consists of current sensor, metal oxide varister (MOV), rectifier, capacitor and electromagnetic counter. The latter consists of rectifier, voltage divider, comparator, photo coupler and counter circuit, and is useful for detecting the surge voltages.

  • PDF

Typhoon-Surge Characteristics and the Highest High Water Levels at the Western Coast (서해안의 태풍해일특성과 고극조위)

  • Kang, Ju Whan;Kim, Yang-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.50-61
    • /
    • 2019
  • The aspects of typhoon-induced surges were classified into three types at the Western coast, and their characteristics were examined. The typhoons OLGA (9907) and KOMPASU (1007) were the representative steep types. As they pass close to the coasts with fast translation velocity, the time of maximum surge is unrelated to tidal phase. However, typhoons PRAPIROON (0012) and BOLAVEN (1215) were the representative mild types, which pass at a long distance to the coasts with slow translation velocity, and were characterized by having maximum surge time is near low tide. Meanwhile, typhoons MUIFA (1109) and WINNIE (9713) can be classified into mild types, but they do not show the characteristics of the mild type. Thus they are classified into propagative type, which are propagated from the outside. Analyzing the annual highest high water level data, the highest water level ever had been recorded when the WINNIE (9713) had attacked. At that time, severe astronomical tide condition overlapped modest surge. Therefore, if severe astronomical tide encounter severe surge in the future, tremendous water level may be formed with very small probability. However, considering that most of the huge typhoons are mild type, time of maximum surge tends to occur at low tide. In case of estimating the extreme water level by a numerical simulation, it is necessary not only to apply various tide conditions and accompanying tide-modulated surge, but also to scrutinize typhoon parameters such as translation velocity and so on.