• Title/Summary/Keyword: surge characteristics

Search Result 457, Processing Time 0.021 seconds

Time History Analysis of Surge Line Considering PVRC Damping (PVRC 감쇠를 고려한 밀림관의 시간이력해석)

  • Kim Tae-Hyung;Jheon Jang-Hwan;Kim Jong-Min;Yoon Ki-Seuk;Kim In-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1025-1032
    • /
    • 2006
  • The PVRC(Pressure Vessel Research Council) damping is for the response spectrum analysis of the piping system. In this study, the possibility to apply it to the time history analysis is evaluated to reduce the higher conservatism for the structural integrity. The evaluation was performed for the surge line connecting the pressurizer to the hot-leg, and the whole mode includes the RCS and the building structures with the surge line. The analyses were performed using ANSYS code. The first modal analysis shows the modes of the surge line are isolated from those of the other structures. The composite modal damping was calculated with PVRC damping for the surge line and RG 1.60 damping for the other structures by using ANSYS routines. Of the calculated composite modal damping values, the composite modal damping values related to the modes of the surge line were replaced with the PVRC damping values with respect to its frequencies. With this replacement, the composite modal damping values of the other structures were not changed. Based on this decouple characteristics, the time history analyses for the seismic events with PVRC damping for the surge line were performed. And the results show the resultant loads can be reduced by up to 50%.

  • PDF

Deterioration Characteristics of ZnO Surge Arrester Blocks for Power Distribution Systems Due to Impulse Currents (임펄스전류에 의한 배전용 ZnO 피뢰기 소자의 열화특성)

  • Lee, Bok-Hee;Cho, Sung-Chul;Yang, Soon-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.79-86
    • /
    • 2013
  • In order to analyze the electrical performance of ZnO surge arresters stressed by the combined DC and AC voltages that are generated in DC/AC converter systems, the leakage current properties of ZnO surge arrester blocks deteriorated by impulse currents were investigated. The test specimens were deteriorated by the 8/$20{\mu}s$ impulse current of 2.5kA and the leakage currents flowing into the deteriorated zinc oxide(ZnO) arrester blocks subjected to the combined DC and power frequency AC voltages are measured. As a result, the leakage currents flowing through deteriorated ZnO surge arrester blocks were higher than those flowing through the fine ZnO surge arrester blocks and the larger the injection number of 8/$20{\mu}s$ impulse current of 2.5kA is, the greater the leakage current is. The leakage current-voltage curves(I-V curves) of the fine and deteriorated ZnO surge arrester blocks stressed by the combined DC and AC voltages show significant difference in the low conduction region. Also the cross-over phenomenon is observed at the voltage close to the knee of conduction on plots of I-V curves.

Characteristics of ZnO Arrester Blocks Leakage Currents under Mixed Direct and 60 Hz Alternating Voltages (직류와 60 Hz 교류가 중첩된 전압에 대한 산화아연 피뢰기 소자의 누설전류 특성)

  • Lee Bok-Hee;Kang Sung-Man;Pak Keon-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • This paper presents the characteristics of leakage currents flowing through ZinC Oxide(ZnO) surge arrester blocks under mixed direct and 60 Hz alternating voltages. A mixed voltage, in which an alternating voltage is superimposed upon a direct voltage, appears on the HVDC system network. The mixed direct and alternating voltage generator with a peak open-circuit of 10 kV was designed and fabricated. The leakage currents and V-I curves for the fine and used ZnO surge arrester blocks were measured as a function of the voltage ratio k, where the voltage ratio k is defined as the ratio of the peak of alternating voltage to the peak of the mixed voltages. The resistive component in the leakage current in the low conduction region is significantly increased with increasing the voltage ratio k. The V-I characteristic curves for the mixed voltages lies between the direct and alternating characteristics, and the cross-over phenomenon in the high conduction region was appeared.

Dead Operation Characteristics of Earth Leakage Circuit Breaker Caused by Impulse Voltages (임펄스전압에 대한 누전차단기의 부동작 특성)

  • Lee, Bok-Hee;Chang, Sug-Hun;Lee, Seung-Chil
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1715-1717
    • /
    • 1997
  • This paper deals with the dead operation characteristics of the earth leakage circuit breaker(ELB) caused by impulse voltages. The surge protective devices for electronic circuit and AC power lines are becoming more widely used. It is possible to give rise to the malfunction of ELB due to the operation of surge protective devices, and the interruption of AC power lines brings about several disadvantages such as low reliability of electronic and informational systems, economical loss, and etc. The dead operation characteristics of the ELB from impulse voltages were measured under the conditions of KS C 4613 and the test circuit with a varistor. As a result, the peak current value of the zero-phase sequence circuit of the ELB is increased as the surge voltage and stray capacitance increase. All of the ELBs used in this work were satisfied with the lightning impulse dead operation test condition defined in KS C 4613. However one specimen only did not cause dead operation in the condition of the test circuit with a varistor. There is high possibility that a large portion of the ELBs connected with the AC power lines having the surge protective devices bring about the dead operation.

  • PDF

Study on Surge Absorption Capability for Power Arrester with MOV Micro-milling Characteristics (전력용 피뢰기의 MOV 미립화와 에너지 내량 특성 연구)

  • Han, Se-Won;Cho, Han-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.120-124
    • /
    • 2004
  • The protection performance and energy absorption capability are important for both MOAs for distribution lines and MOAs for high voltage systems, therefore the manufacturing technique of ZnO varistor elements with high ability against surge impacts is great important for high voltage systems. But until now ZnO varistors for low voltage class have been developed in Korea, ZnO varistors with the rate discharge current of 5, 10kA class for high voltage systems depend on an import from advanced countries, such as Japan or U.S.A, which have developed its in the late 1980s. So in the aspect of taking independent technique the development of ZnO varistors with the rate discharge current of 5, 10kA class for high voltage systems is important. In this research project ZnO varistor elements with diameters of 35mm and 70mm for the rate discharge current of 5, 10kA class for high voltage systems are manufactured, then various chemical composition and processing variables affected the electrical and the physical characteristics of these ZnO varistors are investigated.

  • PDF

A Method for Enhancing Data Transmission Performance in the Power-Line Communication Channel with Low-Voltage Surge Protective Devices (저압용 SPD가 설치된 전력선통신에서 데이터전송 성능 향상)

  • Choi, Jong-Min;Jeon, Tae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.78-85
    • /
    • 2012
  • Low-Voltage power lines should equip surge protection devices which protect electronic equipments and human lives against lightning and abnormal voltages. Data transmission capacity of the power line is determined by frequency characteristics of the surge protective devices. To analyze the effects of surge protective devices on the data transmission performance, various combinations of installation methods are tested which include ZnO varistor elements that is compatible with class I, class II and class III. The result claims that ZnO varistor for class III is found to be one of the main factors that deteriorates the transmission performance. To overcome this problem a serial connection methed between Gap type SPD and ZnO varistor is proposed. With the proposed scheme, laboratory experimental results show that the data transmission performance can be improved up to 91.9[%] with proper SPD combination.

SPH Modeling of Surge Overflow over RCC Strengthened Levee

  • Li, Lin;Amini, Farshad;Rao, Xin;Tang, Hongwu
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.200-208
    • /
    • 2012
  • Surge overflow may cause damage on earthen levees. Levee strengthened on the levee crest and landward-side slope can provide protection against the erosion damage induced by surge overflow. In this paper, surge overflow of a roller compacted concrete RCC strengthened levee was studied in a purely Lagrangian and meshless approach, the smoothed particle hydrodynamics (SPH) method. After verifying the developed model with analytical solution and comparing the results with full-scale experimental data, the roughness and erosion parameters were calibrated. The water thickness, flow velocity, and erosion depth at crest, landward-side slope and toe were calculated. The characteristics of flow hydraulics and erosion on the RCC strengthened levee are given. The results indicate that the RCC strengthened levee can resist erosion damage for a long period.

Experimental Study on the Effect of Inlet Guide Vane of a Centrifugal Compressor (입구 안내익 영향으로 인한 원심 압축기 성능특성 시험연구)

  • Cha, Bong-Jun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.46-53
    • /
    • 2002
  • This paper reports an experimental investigation on a centrifugal compressor with the adjustable inlet guide vane. The compression system is composed of a radial impeller, a vaneless diffuser, and an IGV. The results have shown that surge line on the performance map is affected by the amount of prewhirl and the prewhirl has an effect on transient region between rotating stall and surge. The surge lines have been shifted toward the lower flow region with the increased positive prewhirl and the higher flow region with the increased negative prewhirl. During the unsteady performance test, it was also found that the transient region was reduced with the increased negative prewhirl, and weak signals of rotating stall were detected just before surge as the positive prewhirl was increased.

An Outlook on the Draft-Tube-Surge Study

  • Nishi, Michihiro;Liu, Shuhong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.1
    • /
    • pp.33-48
    • /
    • 2013
  • If large pressure fluctuation is observed in the draft tube of a Francis turbine at part-load operation, we have generally called it draft-tube-surge. As occurrence of this phenomenon seriously affects the limit of turbine operating range, extensive studies on the surge have been made since proposal of surge-frequency criterion given by Rheingans. According to the literature survey of related topics in recent IAHR symposiums on hydraulic machinery and systems, in which state-of-the-art contributions were mainly presented, a certain review of them may be desirable for an outlook on the future studies in this research field. Thus, in this review paper, the authors' previous attempts for the last three decades to challenge the following topics: a rational method for component test of a draft tube, nature of spiral vortex rope and its behavior in a draft tube and cavitation characteristics of pressure fluctuations, are introduced together with other related contributions, expecting that more useful and significant studies will be accomplished in the future.

Experimental Study on the Thermal Flow Stratification in a Horizontal Piping System (수평배관에서의 열유동 성층화현상에 대한 실험적 연구)

  • 김병주;이찬우;장원표
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.2064-2070
    • /
    • 1995
  • Characteristics of thermal flow stratification were studied experimentally by using the small scale pressurizer-surge line model. Thermal flow stratifications in the horizontal section of surge line were analyzed by the relation between the maximum temperature difference at any cross section in surge line and the Froude number representing the boundary conditions, i.e., in/out surge flow velocity and temperature difference of system. Thermal flow stratifications in outsurge flow decreased inversely proportional to the Froude number and did not exist for Fr>1. In insurge flow thermal flow stratifications disappeared near Fr=1.5, but resulted in the higher temperature difference than the case of outsurge flow.