DOI QR코드

DOI QR Code

SPH Modeling of Surge Overflow over RCC Strengthened Levee

  • Li, Lin (Department of Civil and Environmental Engineering, Jackson State University) ;
  • Amini, Farshad (Department of Civil and Environmental Engineering, Jackson State University) ;
  • Rao, Xin (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University) ;
  • Tang, Hongwu (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University)
  • Received : 2012.10.04
  • Accepted : 2012.11.29
  • Published : 2012.11.30

Abstract

Surge overflow may cause damage on earthen levees. Levee strengthened on the levee crest and landward-side slope can provide protection against the erosion damage induced by surge overflow. In this paper, surge overflow of a roller compacted concrete RCC strengthened levee was studied in a purely Lagrangian and meshless approach, the smoothed particle hydrodynamics (SPH) method. After verifying the developed model with analytical solution and comparing the results with full-scale experimental data, the roughness and erosion parameters were calibrated. The water thickness, flow velocity, and erosion depth at crest, landward-side slope and toe were calculated. The characteristics of flow hydraulics and erosion on the RCC strengthened levee are given. The results indicate that the RCC strengthened levee can resist erosion damage for a long period.

Keywords

References

  1. ASCE Hurricane Katrina External Review Panel, The New Orleans Hurricane Protection System: What Went Wrong and Why? American Society of Civil Engineers, Reston, Virginia, (2007).
  2. G. L. Sills, N. D. Vroman, R. E. Wahl, and N. T. Schwanz, Overview of New Orleans Levee Failures: Lessons Learned and Their Impact on National Levee Design and Assessment. J. of Geotechnical and Geoenvironmental Eng. 134 (2008) 556-565. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:5(556)
  3. E. P. Perry, Innovative Methods for Levee Rehabilitation, Technical Report REMR-GT-26, U.S. Army Corps of Engineers, Waterways Experiment Station, (1998).
  4. G. J. Akkerman, P. Bernardini, J. van der Meer, H. Verheij, and A. van Hoven, Field Tests on Sea Defenses Subject to Wave Overtopping, Proc. Costal Structures, Venice, Italy, July 2-4 (2007).
  5. Y. Choi, and K. D. Hansen, RCC/Soil-cement: What's the Difference? J. of Materials in Civil Eng., 17 (2005) 371-378.
  6. F. G. McLean, and K. D. Hansen, Roller Compacted Concrete for Embankment Overtopping Protection, Geotechnical Practice in Dam Rehabilitation, L.R. Anderson, ed., Geotechnical Special Publication 35 (1993), ASCE, 188-209.
  7. G. J. Hanson, K. R. Cook, W. Hahn, and S. L. Britton, Observed Erosion Processes during Embankment Overtopping Tests. Proc., 2003 ASAE Annual Int. Meeting, ASABE, Las Vegas, Paper No. 032066 (2003).
  8. L. Li, Y. Pan, C.P. Kuang, and F. Amini, Full Scale Laboratory Study of Combined Wave and Surge Overtopping of a Levee with RCC Strengthening System, Ocean Eng., 54 (2012) 70-86. https://doi.org/10.1016/j.oceaneng.2012.07.021
  9. J.J. Monaghan, Simulating Free Surface Flows with SPH. Journal of Computational Physics, 110 (1994) 399-406. https://doi.org/10.1006/jcph.1994.1034
  10. J.J. Monaghan, and A. Kos, Solitary Waves on a Cretan Beach. J. of Waterway, Port, Coastal, and Ocean Eng., 125 (1999) 145-154. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145)
  11. P. Liu, P.Z. Lin, K.A. Chang, and T. Sakakiyama, Numerical Modeling of Wave Interaction with Porous Structures. J. of Waterway, Port, Coastal, and Ocean Eng,, 125 (1999) 322-330. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:6(322)
  12. T. Li, P. Troch, and J. De Rouck, Wave Overtopping over a Sea Dike. J. of Computational Physics, 198 (2004) 686-726. https://doi.org/10.1016/j.jcp.2004.01.022
  13. R. Ata, and A. Soulaimani, A Stabilized SPH Method for Inviscid Shallow Water Flows. International J. for Numerical Methods in Fluids, 47 (2005) 139-159. https://doi.org/10.1002/fld.801
  14. S. Shao, C. Ji, D. I. Graham, D. E. Reeve, P. W. James, and A. J. Chadwick, Simulation of Wave Overtopping by an Incompressible SPH Model. Coastal Eng., 53 (2006) 723-735. https://doi.org/10.1016/j.coastaleng.2006.02.005
  15. X. Rao, L. Li, F. Amini, and H. Tang, SPH Modeling of Combined Wave and Surge Overtopping and Hydraulic Erosion of ACB Strengthened Levee System. J. of Coastal Research, doi: http://dx.doi.org/10.2112/JCOASTRES-D-11-00220.1 (2012).
  16. J. J. Monaghan, SPH Compressible Turbulence. Monthly Notices of the Royal Astronomical Society, 335 (2002) 843-852. https://doi.org/10.1046/j.1365-8711.2002.05678.x
  17. J. J. Monaghan, SPH Simulations of Shear Flow. Monthly Notices of the Royal Astronomical Society, 365 (2006) 199-213. https://doi.org/10.1111/j.1365-2966.2005.09704.x
  18. A. Khayyer, H. Gotoh, and S. Shao, Corrected Incompressible SPH Method for Accurate Water- Surface Tracking in Breaking Waves. Coastal Eng., 55 (2008) 236-250. https://doi.org/10.1016/j.coastaleng.2007.10.001
  19. R. A. Dalrymple, and B.D. Rogers, Numerical Modeling of Water Waves with the SPH method. Coastal Eng., 53 (2006) 141-147. https://doi.org/10.1016/j.coastaleng.2005.10.004
  20. J. J. Monaghan, Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics, 30 (1992) 543-548. https://doi.org/10.1146/annurev.aa.30.090192.002551
  21. P. Kristof, B. Benes, J. Krivanek, and O. Stava, Hydraulic Erosion using Smoothed Particle Hydrodynamics. Eurographics, 28 (2009) 236-250.
  22. M. B. Liu, G. R. Liu, and K. Y. Lam, Investigations into Water Mitigations using a Meshless Particle Method, Shock Waves, 12 (2002) 181-195. https://doi.org/10.1007/s00193-002-0163-0
  23. F. M. Henderson, Open Channel Flow. New York, Macmillan Publishing Co., Inc., (1966).