• Title/Summary/Keyword: surface-displayed

Search Result 451, Processing Time 0.029 seconds

Effect of Korean Red Ginseng supplementation on dry eye syndrome in glaucoma patients - A randomized, double-blind, placebo-controlled study

  • Bae, Hyoung Won;Kim, Ji Hyun;Kim, Sangah;Kim, Minkyo;Lee, Naeun;Hong, Samin;Seong, Gong Je;Kim, Chan Yun
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Background: Many patients with glaucoma have difficulty using antiglaucoma eye drops because of dry eye symptom. In this prospective, randomized, double-blind, placebo-controlled study, we evaluated the effect of Korean Red Ginseng on dry eye syndrome in patients with glaucoma treated with antiglaucoma eye drops. Methods: Forty-nine participants were allocated to the Korean Red Ginseng (3 g/day; n = 24) or placebo (n = 25) groups for 8 weeks. Tear film stability, fluorescein corneal staining, conjunctival hyperemia, tear production, grade of meibomian gland dysfunction, and dry eye questionnaire (Ocular Surface Disease Index) were evaluated at baseline and on completion of the treatment. Results: Almost all patients displayed dry eye symptoms and signs at baseline. After the 8-week intervention, Korean Red Ginseng supplementation significantly improved the tear film stability and total Ocular Surface Disease Index score, as compared to placebo (p < 0.01). Conclusion: Korean Red Ginseng supplementation may provide an additional treatment option for dry eye and patients with glaucoma using antiglaucoma eye drops.

Body Pressure Distribution and Textile Surface Deformation Measurement for Quantification of Automotive Seat Design Attributes (운전자의 체압 분포 및 시트변형에 대한 정량화 측정시스템)

  • Kwon, Yeong-Eun;Kim, Yun-Young;Lee, Yong-Goo;Lee, Dongkyu;Kwon, Ohwon;Kang, Shin-Won;Lee, Kang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.397-402
    • /
    • 2018
  • Proper seat design is critical to the safety, comfort, and ergonomics of automotive driver's seats. To ensure effective seat design, quantitative methods should be used to evaluate the characteristics of automotive seats. This paper presents a system that is capable of simultaneously monitoring body pressure distribution and surface deformation in a textile material. In this study, a textile-based capacitive sensor was used to detect the body pressure distribution in an automotive seat. In addition, a strain gauge sensor was used to detect the degree of curvature deformation due to high-pressure points. The textile-based capacitive sensor was fabricated from the conductive fabric and a polyurethane insulator with a high signal-to-noise ratio. The strain gauge sensor was attached on the guiding film to maximize the effect of its deformation due to bending. Ten pressure sensors were placed symmetrically in the hip area and six strain gauge sensors were distributed on both sides of the seat cushion. A readout circuit monitored the absolute and relative values from the sensors in realtime, and the results were displayed as a color map. Moreover, we verified the proposed system for quantifying the body pressure and fabric deformation by studying 18 participants who performed three predefined postures. The proposed system showed desirable results and is expected to improve seat safety and comfort when applied to the design of various seat types. Moreover, the proposed system will provide analytical criteria in the design and durability testing of automotive seats.

Damage Proxy Map over Collapsed Structure in Ansan Using COSMO-SkyMed Data

  • Nur, Arip Syaripudin;Fadhillah, Muhammad Fulki;Jung, Young-Hoon;Nam, Boo Hyun;Kim, Yong Je;Park, Yu-Chul;Lee, Chang-Wook
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.363-376
    • /
    • 2022
  • An area under construction for a living facility collapsed around 12:48 KST on 13 January 2021 in Sa-dong, Ansan-si, Gyeonggi-do. There were no casualties due to the rapid evacuation measure, but part of the temporary retaining facility collapsed, and several cracks occurred in the adjacent road on the south side. This study used the potential of synthetic aperture radar (SAR) satellite for surface property changes that lies in backscattering characteristic to map the collapsed structure. The interferometric SAR technique can make a direct measurement of the decorrelation among different acquisition dates by integrating both amplitude and phase information. The damage proxy map (DPM) technique has been employed using four high-resolution Constellation of Small Satellites for Mediterranean basin Observation (COSMO-SkyMed) data spanning from 2020 to 2021 during ascending observation to analyze the collapse of the construction. DPM relies on the difference of pre- and co-event interferometric coherences to depict anomalous changes that indicate collapsed structure in the study area. The DPMs were displayed in a color scale that indicates an increasingly more significant ground surface change in the area covered by the pixels, depicting the collapsed structure. Therefore, the DPM technique with SAR data can be used for damage assessment with accurate and comprehensive detection after an event. In addition, we classify the amplitude information using support vector machine (SVM) and maximum likelihood classification algorithms. An investigation committee was formed to determine the cause of the collapse of the retaining wall and to suggest technical and institutional measures and alternatives to prevent similar incidents from reoccurring. The report from the committee revealed that the incident was caused by a combination of factors that were not carried out properly.

Theoretical fabrication of Williamson nanoliquid over a stretchable surface

  • Sharif, Humaira;Hussain, Muzamal;Khadimallah, Mohamed Amine;Ayed, Hamdi;Taj, Muhammad;Bhutto, Javed Khan;Mahmoud, S.R.;Iqbal, Zafer;Ahmad, Shabbir;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.103-113
    • /
    • 2022
  • On the basis of fabrication, the utilization of nano material in numerous industrial and technological system, obtained the utmost significance in current decade. Therefore, the current investigation presents a theoretical disposition regarding the flow of electric conducting Williamson nanoliquid over a stretchable surface in the presence of the motile microorganism. The impact of thermal radiation and magnetic parameter are incorporated in the energy equation. The concentration field is modified by adding the influence of chemical reaction. Moreover, the splendid features of nanofluid are displayed by utilizing the thermophoresis and Brownian motion aspects. Compatible similarity transformation is imposed on the equations governing the problem to derive the dimensionless ordinary differential equations. The Homotopy analysis method has been implemented to find the analytic solution of the obtained differential equations. The implications of specific parameters on profiles of velocity, temperature, concentration and motile microorganism density are investigated graphically. Moreover, coefficient of skin friction, Nusselt number, Sherwood number and density of motile number are clarified in tabular forms. It is revealed that thermal radiation, thermophoresis and Brownian motion parameters are very effective for improvement of heat transfer. The reported investigation can be used in improving the heat transfer appliances and systems of solar energy.

Stealth, electromagnetic interception, and electrical properties of aluminum sputtered clothing materials - Focusing on the density change - (알루미늄 스퍼터링 처리 의류소재의 스텔스 특성과 전자파 차단 및 전기적 특성에 관한 연구 - 밀도 변화를 중심으로 -)

  • Han, Hye Ree
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.4
    • /
    • pp.579-593
    • /
    • 2022
  • This study examines the surface characteristics, electrical conductivity, electromagnetic wave blocking characteristics, infrared (IR) transmittance, stealth function, thermal characteristics, and moisture characteristics of IR thermal imaging cameras. Nylon film (NFi), nylon fabric (NFa), and 5 types of nylon mesh were selected as the base materials for aluminum sputtering, and aluminum sputtering was performed to study IR thermal imaging, color difference, temperature change, and so on, and the relationship with infrared transmittance was assessed. The electrical conductivity was measured and the aluminum-sputtered nylon film demonstrated 25.6kΩ of surface resistance and high electrical conductivity. In addition, the electromagnetic wave shielding characteristics of the sputtering-treated nylon film samples were noticeably increased as a result of aluminum sputtering treatment as measured by the electromagnetic wave blocking characteristics. When NFi and NFa samples with single-sided sputtering were placed on the human body (sputtering layer faced the outside air) and imaged using IR thermographic cameras, the sputtering layer displayed a color similar to the surroundings, showing a stealth effect. Moreover, the tighter the sample density, the better the stealth function. According to the L, a, b measurements, when the sputtering layer of NFi and NFa samples faced the outside air, the value of a was generally high, thereby demonstrating a concealing effect, and the △E value was also high at 124.2 and 93.9, revealing a significant difference between the treated and untreated samples. This research may be applicable to various fields, such as the military wear, conductive sensors, electromagnetic wave shielding film, and others.

A study on the manufacturing of durable and long afterglow phosphorescent paints added with rare earths for night visibility of pavement (야간 시인성 확보를 위한 희토류 첨가 고내구성 장잔광 축광도료 제조에 관한 연구)

  • Eunseok Woo;Yunseok Noh;Jinho Lee;Yong-Wook Choi;JongGee Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.2
    • /
    • pp.152-159
    • /
    • 2023
  • The night visibility of pavement is being considered as a global issue in the field of traffic safety. Although the spreading glass beads on the lane paints has been mainly used to secure night-visibility by utilizing the effect of retroreflection, obvious shortcoming of this method is that retroflection does not occur in the range where the headlights do not reach the glass beads. The use of functional paints including phosphorescent constituents could be a solution for overcoming fore-mentioned problem. SrAl2O4 based chemicals have not only good phosphorescent property, but also are chemically stable compared to existing ZnS based materials. However, this chemicals also need the improvement due to slightly reduced luminous effect in time. Herein, we developed novel paints showing enhanced phosphorescent properties by putting rare earth elements such as Eu, Dy and Y into SrAl2O4. These prepared phosphorescent pigments have displayed improved properties in terms of durability and long afterglow. For instance, the property of afterglow has been persisted after 5 hours with luminace of 20.6 mcd/m2.

Errors in light-emitting diodes positioning when curing bulk fill and incremental composites: impact on properties after aging

  • Abdulrahman A. Balhaddad;Isadora M. Garcia;Haifa Maktabi;Maria Salem Ibrahim;Qoot Alkhubaizi;Howard Strassler;Fabricio M. Collares;Mary Anne S. Melo
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.51.1-51.13
    • /
    • 2021
  • Objectives: This study aimed to evaluate the effect of improper positioning single-peak and multi-peak lights on color change, microhardness of bottom and top, and surface topography of bulk fill and incremental composites after artificial aging for 1 year. Materials and Methods: Bulk fill and incremental composites were cured using multi-peak and single-peak light-emitting diode (LED) following 4 clinical conditions: (1) optimal condition (no angulation or tip displacement), (2) tip-displacement (2 mm), (3) slight tip angulation (α = 20°) and (4) moderate tip angulation (α = 35°). After 1-year of water aging, the specimens were analyzed for color changes (ΔE), Vickers hardness, surface topography (Ra, Rt, and Rv), and scanning electron microscopy. Results: For samples cured by single-peak LED, the improper positioning significantly increases the color change compared to the optimal position regardless of the type of composite (p < 0.001). For multi-peak LED, the type of resin composite and the curing condition displayed a significant effect on ΔE (p < 0.001). For both LEDs, the Vickers hardness and bottom/top ratio of Vickers hardness were affected by the type of composite and the curing condition (p < 0.01). Conclusions: The bulk fill composite presented greater resistance to wear, higher color stability, and better microhardness than the incremental composite when subjected to improper curing. The multi-peak LED improves curing under improper conditions compared to single-peak LED. Prevention of errors when curing composites requires the attention of all personnel involved in the patient's care once the clinical relevance of the appropriate polymerization reflects on reliable long-term outcomes.

Protists in hypoxic waters of Jinhae Bay and Masan Bay, Korea, based on metabarcoding analyses: emphasizing surviving dinoflagellates

  • Jin Hee Ok;Hae Jin Jeong;Hee Chang Kang;Ji Hyun You;Sang Ah Park;Se Hee Eom;Jin Kyeong Kang;Yeong Du Yoo
    • ALGAE
    • /
    • v.38 no.4
    • /
    • pp.265-281
    • /
    • 2023
  • Hypoxia can indeed impact the survival of protists, which play a crucial role in marine ecosystems. To better understand the protistan community structure and species that can thrive in hypoxic waters, we collected samples from both the surface and bottom waters during the hypoxic period in Jinhae and Masan Bays and the non-hypoxic period in Jinhae Bay. Subsequently, we utilized metabarcoding techniques to identify the protistan species. During hypoxia, with dissolved oxygen concentrations of 0.8 mg L-1 in Jinhae Bay and 1.8 mg L-1 in Masan Bay within the bottom waters, the phylum Dinoflagellata exhibited the highest amplicon sequence variants richness among the identified protist phyla. Following the Dinoflagellata, Ochrophyta and Ciliophora also displayed notable presence. In hypoxic waters of Jinhae and Masan Bays, we identified a total of 36 dinoflagellate species that exhibited various trophic modes. These included one autotrophic species, 14 mixotrophic species, 9 phototrophic species with undetermined trophic modes (either autotrophic or mixotrophic), 2 kleptoplastidic species, and 10 heterotrophic species. Furthermore, the hypoxic bottom water exhibited a greater number of heterotrophic dinoflagellate species compared to the non-hypoxic surface water within the same water column or the non-hypoxic bottom water. Therefore, feeding by mixotrophic and heterotrophic dinoflagellates may be partially responsible for their dominance in terms of the number of species surviving in hypoxic waters. This study not only introduces the initial documentation of 26 dinoflagellate species surviving in hypoxic conditions but also establishes a foundation for a more comprehensive understanding of the ecophysiology of dinoflagellates in hypoxic marine environments.

Optimization of forensic identification through 3-dimensional imaging analysis of labial tooth surface using open-source software

  • Arofi Kurniawan;Aspalilah Alias;Mohd Yusmiaidil Putera Mohd Yusof;Anand Marya
    • Imaging Science in Dentistry
    • /
    • v.54 no.1
    • /
    • pp.63-69
    • /
    • 2024
  • Purpose: The objective of this study was to determine the minimum number of teeth in the anterior dental arch that would yield accurate results for individual identification in forensic contexts. Materials and Methods: The study involved the analysis of 28 sets of 3-dimensional (3D) point cloud data, focused on the labial surface of the anterior teeth. These datasets were superimposed within each group in both genuine and imposter pairs. Group A incorporated data from the right to the left central incisor, group B from the right to the left lateral incisor, and group C from the right to the left canine. A comprehensive analysis was conducted, including the evaluation of root mean square error (RMSE) values and the distances resulting from the superimposition of dental arch segments. All analyses were conducted using CloudCompare version 2.12.4 (Telecom ParisTech and R&D, Kyiv, Ukraine). Results: The distances between genuine pairs in groups A, B, and C displayed an average range of 0.153 to 0.184mm. In contrast, distances for imposter pairs ranged from 0.338 to 0.522 mm. RMSE values for genuine pairs showed an average range of 0.166 to 0.177, whereas those for imposter pairs ranged from 0.424 to 0.638. A statistically significant difference was observed between the distances of genuine and imposter pairs(P<0.05). Conclusion: The exceptional performance observed for the labial surfaces of anterior teeth underscores their potential as a dependable criterion for accurate 3D dental identification. This was achieved by assessing a minimum of 4 teeth.

Comparison of Surface Fuel and Soil Layer Moisture after Rainfall in Broad-Leaved Forest at Young Dong Region (영동지역 활엽수림에서의 강우 후 지표연료의 습도변화 분석)

  • Kwon, Chun-Geun;Lee, Si-Young;Lee, Hae-Pyeong
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.49-60
    • /
    • 2012
  • The change in fuel moisture in accordance with the number of days after rainfall is an important factor in predicting forest fire dangers and supporting forest fire rangers. Therefore, in order to clear up these forest fire occurrence conditions, forest fire danger levels for surface fuel 0.6 cm or lower, 0.6~3.0 cm, 3.0~6.0 cm, and 6.0 cm or above by fallen leaves layer, humus layer, soil layer, and diameter after rainfall of 5.0 mm and higher in accordance with tree density in 2008, 2009 Spring/Autumn Young Dong region have been analyzed. Research showed an approximate 17 % fuel moisture which is a dangerous forest fire occurrence level after 5 days from rainfall in medium-density areas and 3 days after rainfall in loose-density areas of Spring time in the fallen leaves layer. On the other hand, the humus layer showed a 40 % or higher fuel humidity even after 6 days from rainfall regardless of the season, while the upper and lower parts of the soil layer had a little change. In loose-density areas with 0.6 cm or less surface fuel per diameter in Spring time, the fuel humidity displayed a dangerous level in fire forest occurrence after 3 days, and 4days in medium-density areas, and for loose-density areas with 0.6~3.0 cm surface fuel per diameter in Autumn time it showed a dangerous level in forest fire occurrence after 3 days, and for medium-density areas, 5 days. In the case of 3.0~6.0 cm of fuel moisture per diameter in both Spring and Autumn times, even after 6 days, low and medium-density areas showed that they maintain fuel moisture and therefore the dangers of forest fires were very low, and in the case of 6.0 cm or higher, it showed 25 % or higher fuel moisture even after 6 days from rainfall regardless of the season.