• Title/Summary/Keyword: surface wetting

Search Result 371, Processing Time 0.02 seconds

Comparison of Fire Extinguishing Effects for Water Mist Additives (미분무수 첨가제의 소화효과 비교)

  • Kim, Seung Il;Shin, Chang Sub
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.23-28
    • /
    • 2013
  • In order to improve extinguishing performance of water mist, many studies of additives have been conducted. In this study, viscosity agent which has the ability to improve extinguishing performance by adhering to the surface on fire was used and fluorine-free surfactant was also added to water to enhance water's wetting ability. This study aimed to verify optimal concentration of extinguishing of additives according to fire source and extinguishing performance by comparison with pure water. In case of wood crib fire, the results show that flame suppression and extinguishing time of sodium alginate 0.4 wt.% are 3.4 times and 2.2 times shorter than those of pure water in 0.2 MPa respectively. It seems that large amount of water adhere to surface on fire, thus cooling effect on surface was enhanced. Also water consumption of sodium alginate 0.4wt.% is up to 65% lower than that of pure water. In case of heptane fire, extinguishing time of cocobetaine 0.1 wt.% is 9.7 times shorter than that of pure water in 0.2 MPa. It is thought that because cocobetaine can block oxygen and suppress oil mist by making emulsion film on fire surface due to a low surface tension. On the other hand, water consumption of cocobetaine 0.1 wt.% is 92% lower than that of pure water.

Nanotribological Characteristics of Plasma Treated Hydrophobic Thin Films on Silicon Surfaces using SPM (SPM을 이용한 Si 표면위에 플라즈마 처리된 소수성 박막의 나노 트라이볼로지적 특성 연구)

  • 윤의성;양승호;공호성;고석근
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.109-115
    • /
    • 2003
  • Nanotribological characteristics between a Si$_3$N$_4$ AFM tip and hydrophobic thin films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM (atomic force microscope) and LFM (lateral force microscope) modes in various .ranges of normal load. Plasma-modified thin polymeric films were deposited on Si-wafer (100). Results showed that wetting angle of plasma-modified thin polymeric film increased with the treating time, which resulted in the hydrophobic surface and the decrease of adhesion and friction. Nanotribological characteristics of these surfaces were compared with those of other hydrophobic surfaces, such as DLC, OTS and IBAD-Ag coated surfaces. Those of OTS coated surface were superior to those of others, though wetting angle of plasma-modified thin polymeric film is higher.

Micro-Contact Printing Method for Patterning Liquid Crystal Alignment Layers

  • Jung, Jong-Wook;Kim, Hak-Rim;Lee, You-Jin;Kim, Jae-Hoon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.12-15
    • /
    • 2006
  • We propose a patterning method of liquid crystal (LC) alignment layer for producing multi-domain LC structures. By controlling thermal conditions during micro-contact printing procedures and facilitating wetting properties of patterning materials, patterned LC orientation can be easily obtained on a bare ITO surface or other polymer films. The newly proposed patterning method is expected to be a very useful tool for fabricating multi-domain LC structures to enhance or design electro-optic properties of LC-based devices.

An Experimental Study on the Rolling Resistance of Silver Coating Films Modified by Plasma Surface Treatments (플라즈마 표면개질 처리된 은 박막의 구름저항거동 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.49-58
    • /
    • 1998
  • An experimental study was performed to discover the effect of adsorbed moisture on the rolling resistance behavior of pure silver coated 52100 bearing steel. Plasma surface modifications were performed on the silver coated specimen to change the wetting characteristics. Experiments using a thrust ball beating-typed roiling test-rig were performed under vacuum, dry air and various tmmidity conditions. Results showed that the changes in the wetting characteristics influenced remarkably on the silver particle agglomeration and resulted in the different behavior of rolling resistance with humidity.

  • PDF

Surface Modification of Automobile Rubber by Various Plasma Treatments

  • Lee, Seung-Hun;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.26-30
    • /
    • 2008
  • This study examined the surface modification characteristics of NBR using sealing in automobile. Surfaces of NBR were modified by RF power Ar plasma treatment. In experiment, pressure, flux, temperature were fixed and RF bias voltage. Treatment time was changed. In friction test, we used PTFE grease. After modification, surfaces of NBR showed many grooves, hydrophilic functional groups, and lipophilic functional groups. As increasing treating voltage and time, the amount of them was increased. And wetting angle and friction coefficient was decreased with increasing treating voltage and time. However, the pattern of changing friction coefficient was not fixed.

An Experimental Study on the Rolling Resistance of Silver-Coated Films Modified by Plasma Surface Treatments (플라즈마 표면개질 처리된 은 박막의 구름저항거동 고찰)

  • 양승호;공호성;윤의성;김대은
    • Tribology and Lubricants
    • /
    • v.15 no.4
    • /
    • pp.321-327
    • /
    • 1999
  • An experimental study was performed to discover the effect of adsorbed moisture on the rolling resistance behavior of pure silver-coated 52100 bearing steel. Plasma surface modifications were performed on the silver-coated specimen to change the wetting characteristics. Experiments using a thrust ball bearing-type rolling test-rig were performed under vacuum, dry air and various humidity conditions. Results showed that the changes in the wetting characteristics influenced remarkably on the silver particle agglomeration and resulted in the different behavior of rolling resistance with humidity.

A Study on the Characteristics of Sn-Ag-X Solder Joint -The Wettability of Sn-Ag-Bi-In Solder to Plated Substrates- (Sn-Ag-X계 무연솔더부의 특성 연구 -기판 도금층에 따른 Sn-Ag-Bi-In 솔더의 젖음특성-)

  • 김문일;문준권;정재필
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.1
    • /
    • pp.11-16
    • /
    • 2002
  • As environmental concerns increasing, the electronics industry is focusing more attention on lead free solder alternatives. In this research, we have researched wettability of intermediate solder of Sn3Ag9Bi5In, which include In and Bi and has similar melting temperature to Sn37Pb eutectic solder. We investigated the wetting property of Sn3Ag9Bi5In. To estimate wettability of Sn3Ag9Bi5In solder on various substrates, the wettability of Sn3Ag9Bi5In solder on high-pure Cu-coupon was measured. Cu-coupon that plated Sn, Ni and Au/Ni and Si-wafer adsorbed Ni/Cu under bump metallurgy on one side. As a result, the wetting property of Sn3Ag9Bi5In solder is a little better than that of Sn37Pb and Sn3.5Ag.

Technology Trend of surface Wettability Control Using Layer-by-Layer Assembly Technique (다층박막법을 이용한 표면 젖음성 제어 기술 동향)

  • Sung, Chunghyun
    • Journal of Adhesion and Interface
    • /
    • v.18 no.4
    • /
    • pp.171-178
    • /
    • 2017
  • Recently, layer-by-layer (LbL) assembly has emerged as a promising fabrication technique in controlling surface wetting properties. LbL assembly technique is eco-friendly versatile technique to control the hierarchical structure and surface properties in nano- and micro-scale by employing a variety of materials (e.g., polymers, surfactants, nanoparticles, etc.). This article reviews recent progress in controlling the surface wetting using LbL technique. In particular, technical trends and research findings on fabrication and the applications of superhydrophobic, superhydrophilc, and superoleophobic/superhydrophilic LbL surfaces are extensively explained. Additionally, basic principles and fabrication methods in emerging areas such as omniphobic, self-healing, intelligent and responsive LbL surfaces are discussed.

Study on Wetting Characteristics of Laser Cladding Surfaces (레이저 클래딩 표면에 대한 젖음 특성에 관한 연구)

  • Jang, Mu-Yeon;Park, Young-Whan;Kim, Tae-Wan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.35-40
    • /
    • 2019
  • Laser processing has been used in various fields. In this study, the feasibility of a hydrophobic surface was investigated through the laser cladding technique. A diode laser was used, and the output was set to 600-800 W. Seven different specimens were prepared with different cladding widths and spacings, and the contact angles for water droplets were evaluated. As a result, the contact angle of water droplets measured in the direction parallel to the cladding line was higher than that in the vertical direction. The wider the cladding width and the cladding space, the higher the contact angle in the parallel direction. It is thought that when a higher contact angle is formed in the parallel direction, more air can be placed in the valley between the cladding lines. In addition, for the hydrophobic coating effect, the contact angle of the coated cladding surface was increased by about $5-15^{\circ}$ as a whole compared to the coated smooth surface. It was confirmed that the wetting characteristics were improved through the cladding.