• Title/Summary/Keyword: surface wave velocity

Search Result 602, Processing Time 0.029 seconds

Hybrid Integration of P-Wave Velocity and Resistivity for High-Quality Investigation of In Situ Shear-Wave Velocities at Urban Areas (도심지 지반 전단파속도 탐사를 위한 P-파 속도와 전기비저항의 이종 결합)

  • Joh, Sung-Ho;Kim, Bong-Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.45-51
    • /
    • 2010
  • In urban area, design and construction of civil engineering structures such as subway tunnel, underground space and deep excavation is impeded by unreliable site investigation. Variety of embedded objects, electric noises and traffic vibrations degrades the quality of site investigation, whatever the site-investigation technique would be. In this research, a preliminary research was performed to develop a dedicated site investigation technique for urban geotechnical sites, which can overcome the limitations of urban sites. HiRAS (Hybrid Integration of Surface Waves and Resistivity) technique which is the first outcome of the preliminary research was proposed in this paper. The technique combines surface wave as well as electrical resistivity. CapSASW method for surface-wave technique and PDC-R technique for electrical resistivity survey were incorporated to develop HiRAS technique. CapSASW method is a good method for evaluating material stiffness and PDC-R technique is a reliable method for determination of underground stratification even in a site with electrical noise. For the inversion analysis of HiRAS techniuqe, a site-specific relationship between stress-wave velocity and resistivity was employed. As for outgrowth of this research, the 2-D distribution of Poisson's ratio could be also determined.

Numerical study on supercavitating flow in free stream with regular waves

  • Li, Da;Lyu, Xujian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.799-809
    • /
    • 2020
  • In this study, the supercavitating flow of a high-velocity moving body near air-water surface is calculated and analyzed based on a commercial CFD software ANSYS Fluent. The effect of regular wave parameters including both wave height and wavelength on the cavitating flow and force characteristics of a body at different velocities is investigated. It is found that the cavity shape, lift coefficient and drag coefficient of the body vary periodically with wave fluctuation, and the variation period is basically consistent with wave period. When the wavelength is much greater than the cavity length, the effect of wave on supercavitation is the alternating effect of axial compression and radial compression. However, when the wavelength varies around the cavity length, the cavity often crosses two adjacent troughs and is compressed periodically by the two wave troughs. With the variation of wavelength, the average area of cavity shows a different trend with the change of wave height.

Determination of Shear Wave Velocity Profile under Existing Building for Site Response Analysis Using HWAW Method (HWAW방법을 이용한 기존 건물 내진 보강을 위한 건물 하부지반 전단파 속도 주상도 결정)

  • Park, Hyung-Choon;Hwang, Hea-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.5
    • /
    • pp.15-23
    • /
    • 2017
  • The evaluation of earthquake load on the surface is very important factor for the seismic reinforcement of existing building, and the magnitude of earthquake load depends on a shear wave velocity profile of soil under a building. To determine a shear wave velocity profile under a existing building, test method should be able to determine a reliable shear wave velocity profile under conditions such as heavy background noise and the small test area, and be sensitive to the variation of material property. In this research, HWAW (Harmonic Wavelet Analysis of Waves) method is applied to determine a shear wave velocity profile under a existing building. In this paper, through numerical simulations and field tests, the feasibility of the proposed method was shown.

Application of PIV in a Transonic Centrifugal Impeller

  • Hayami Hiroshi;Hojo Masahiro;Aramaki Shinichiro
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.1-5
    • /
    • 2001
  • A particle image velocimetry (PIV) was applied to a flow measurement in a transonic centrifugal impeller. A phase locked measurement technique every $20\%$ blade pitch enabled a reconstruction of a velocity field over one blade pitch. The measured velocity field at the inducer of impeller clearly showed a shock wave generated on the suction surface of a blade.

  • PDF

Reflection and Transmission of Electromagnetic Waves at the Oscillating Dielectric Plane Surface;(Transverse Electric Wave) (진동하는 수전체면에서 전자파의 반사와 투과(TE파에 대하여))

  • 구자건
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.10 no.4
    • /
    • pp.193-200
    • /
    • 1985
  • In the reflection and transmission of a plane wave(TE) from a dielectric plane surface oscillating sinusoidally perpendicular to its surface, one could assume that the boundary moves with a uniform velocity equal to the instantaneous oscillating velocity. The reflected and the transmitted fields are obtained as the function of the incident angles, the dielecri'c permittivity, and the oscillating velocities according to the extended Lorentz transform.

  • PDF

Non-Destructive Detection of Hydride Blister in PHWR Pressure Tube Using an Ultrasonic Velocity Ratio Method

  • Cheong Yong-Moo;Lee Dong-Hoon;Kim Sang-Jae;Kim Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.369-377
    • /
    • 2003
  • Since Zr-2.5Nb pressure tubes have a high risk for the formation of blisters during their operation in pressurized heavy water reactors, there has been a strong incentive to develop a method for the non-destructive detection of blisters grown on the tube surfaces. However, because there is little mismatch in acoustic impedance between the hydride blisters and zirconium matrix, it is not easy to distinguish the boundary between the blister and zirconium matrix with conventional ultrasonic methods. This study has focused on the development of a special ultrasonic method, so called ultrasonic velocity ratio method for a reliable detection of blisters formed on Zr-2.5Nb pressure tubes. Hydride blisters were grown on the outer surface of the Zr-2.5Nb pressure tube using a cold finger attached to a steady state thermal diffusion equipment. To maximize a difference in the ultrasonic velocity in hydride blisters and the zirconium matrix, the ultrasonic velocity ratio of longitudinal wave to shear wave, $V_L/V_S$, has been determined based on the flight time of the longitudinal echo and reflected shear echo from the outer surface of the tubes. The feasibility of the ultrasonic velocity ratio method is confirmed by comparing the contour plots reproduced by this method with those of the blisters grown on the Zr-2.5Nb pressure tubes.

Evaluation of Corrosion Degradation Characteristics of Turbine Blade Material Using Backward Radiated Ultrasound (후방복사된 초음파를 이용한 터빈 블레이드 재료의 부식 열화특성 평가)

  • Song, Sung-Jin;Kim, Young-H.;Bae, Dong-Ho;Jung, Min-Ho;Kwon, Sung-Duk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2322-2327
    • /
    • 2002
  • The corrosion degradation characteristics of the 12Cr alloy steel, which is widely used in fossil power plants as a turbine blade material, are evaluated nondestructively by use of the backward radiated Rayleigh surface wave. In order to evaluate corrosion degradation characteristics, we constructed automated system for the backward radiation, and the frequency dependency of the Rayleigh surface wave is investigated indirectly by measuring the angular dependency of the backward radiation of the incident ultrasonic wave in the specimens. The velocity of the surface wave decrease as the increase of the aging time in the backward radiation profile, which seems to result from the increase of the effective degrading layer thickness. And, amplitude of the surface wave increase as the aging time, which seems to result from the increase of the intergranular corrosion. The result observed in this study demonstrates high potential of the backward radiated ultrasound as a tool for the nondestructive evaluation of the corrosion degradation characteristics of the aged materials.

Analysis on Shock Attenuation of STS Bulkhead Initiator (STS 격벽착화기의 충격파 감쇠 특성 해석)

  • Kim, Bohoon;Jang, Seung-gyo;Yoh, Jai-ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.440-444
    • /
    • 2017
  • Two-dimensional hydrodynamic analysis was performed to analyze the attenuating characteristics of shock waves generated by the detonation of the bulkhead initiator. Through the interlocking analysis between HNS and HMX stacking initiator and STS bulkhead, we have precisely simulated detonation growth and pressure wave attenuation phenomena. The free surface velocity at the surface of the bulkhead was measured for quantitative comparison with the test data by VISAR. As a result, it was confirmed that the pressure attenuating pattern of the shock wave exponentially decreased according to the bulkhead thickness. The observed inflection point at the particle velocity measured over time is due to the subsequent propagation of the shock wave due to the rapid spallation of the interface between the detonator and the bulkhead.

  • PDF

The characteristics of upper crust below the southern Korean Peninsula by using 3-D tomography (3차원 토모그래피 방법으로 본 한반도 남부지역의 상부지각 속도 특성)

  • Park, Jung-Ho;Kang, Ik-Bum
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.64-69
    • /
    • 2006
  • At starting point, 1D velocity models were inverted by using 430 events with P-wave 5147, S-wave 3729 from KIGAM, KMA, KEPRI, and KINS's seismic networks. A minimum 1D model shows that P-wave velocities are around $6.0{\pm}0.5\;km/s$ slowly increasing with depth between surface and 15 km. The velocities are about $6.4{\pm}0.2\;km/s$ below 15km to 35km. The earthquake data number for 3D tomography was 630 adding to previous 430 events with limitation of more than 6 station detection and relocation stability of location. The checkerboard test shows that only upper curst part from surface to 17 km have reliable resolution. The results of upper crust part present that the boundary of Gyeong-sang basin and Youngnam massif is mach well velocity variation pattern. The western part of the basin is shown as lower velocity and south-eastern part as higher. This is because that sedimentary rocks are widely located around western part of the basin and volcanic origin rocks are distributed around south-eastern part.

  • PDF