• Title/Summary/Keyword: surface water monitoring

Search Result 529, Processing Time 0.03 seconds

An Improved Method for Monitoring of Soil Moisture Using NOAA-AVHRR Data

  • Fu, June;Pang, Zhiguo;Xiao, Qianguang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.195-197
    • /
    • 2003
  • Soil moisture is a crucial variable in research works of hydrology, meteorology and plant sciences. Adequate soil moisture is essential for plant growth; excesses and deficits of soil moisture must be considered in agricultural practices. There are already several remote sensing methods used for monitoring soil moisture, such as thermal inertia, vegetation water-supplying index, crop water stress index and multi-factor regression. In this paper, an improved method has been discussed which is based on the thermal inertia. We analyzed the problems of monitoring soil moisture using satellites at first, and then put forward an simplified method which directly uses land surface temperature differences to measure soil moisture. Also we have taken the influence of vegetation into account, and import NDVI into the model. The method was used in the study of soil moisture in Heilongjiang Province, China, and we draw the conclusion by the experiments that the model can evidently increase the precision of monitoring soil moisture.

  • PDF

Development of a Real-Time Water Quality Monitoring System using Coastal Passenger Ships and PCS Telemetry

  • Jin, Jae-Youll;Park, Jin-Soon;Lee, Jong-Kuk;Park, Kwang-Soon;Lee, Dong-Young;Yum, Ki-Dai
    • Ocean and Polar Research
    • /
    • v.21 no.2
    • /
    • pp.117-126
    • /
    • 1999
  • To meet increasing needs for environmentally sustainable management of coastal area, there has been compelling pressure to establish a cost-effective and long-term coastal water quality (CWQ) monitoring system. A remote CWQ monitoring system, STAMP, has been developed and is in operation along the route between Kyema harbor and Anma Island in the southwestern coastal area of Korea. STAMP uses a PCS phone as a telemetry unit to transmit acquired data for monitoring general water quality parameters, and a routinely operating coastal passenger ship or car ferry. STAMP has various merits of low-cost operations; long-term monitoring with secure instrumentation; and stable real-time telemetry of acquired data with-out the loss and noise. It is expected that the system will serve as a very useful tool in the CWQ managing programs of Korea taking the advantage of many coastal passenger ships in various routes including the ships departing from the coastal industrial cities. The acquired data compiled on suspended surface sediment concentrations (SSSC) will be also valuably helpful in understanding the sediment budget across the routes of the vessel.

  • PDF

Simultaneous Determination and Occurrences of Pharmaceuticals by Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) in Environmental Aqueous Samples

  • Koo, So-Hyun;Jo, Cheon-Ho;Shin, Sun-Kyoung;Myung, Seung-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1192-1198
    • /
    • 2010
  • Pharmaceuticals and personal care products (PPCPs) are emerging contaminants in the aquatic environment. Many pharmaceuticals are not completely removed during wastewater treatment, leading to their presence in wastewater treatment effluents, rivers, lakes, and ground water. Here, we developed analytical methods for monitoring ten pharmaceuticals from surface water by LC/ESI-MS/MS. For sample clean-up and extraction, MCX (mixed cation exchange) and HLB (hydrophilic-lipophilic balance) solid-phase extraction (SPE) cartridges were used. The limits of detection (LOD) in distilled water and the blank surface water were in the range of 0.006 - 0.65 and 1.66 - 45.05 pg/mL, respectively. The limits of quantitation (LOQ) for the distilled water and the blank surface water were in the range of 0.02 - 2.17 and 5.52 - 150.15 pg/mL, respectively. The absolute recoveries for fortified water samples were between 62.1% and 125.4%. Intra-day precision and accuracy for the blank surface water were 2.9% - 24.1% (R.S.D.) and -16.3% - 16.3% (bias), respectively. In surface wastewater near rivers, chlortetracycline and acetylsalicylic acid were detected frequently in the range of 0.017 - 5.404 and 0.029 - 0.269 ng/mL, respectively. Surface water near rivers had higher levels than surface water of domestic treatment plants.

Comparative assessment of surface and ground water quality using geoinformatics

  • Giridhar, M.V.S.S.;Mohan, Shyama;Kumar, D. Ajay
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.151-160
    • /
    • 2020
  • Water quality demonstrates physical, chemical and biological characteristics of water. The quality of surface and groundwater is currently an important concern with population growth and industrialization. Over exploitation of water resources due to demand is causing the deterioration of surface water and ground water. Periodic water quality testing must be carried out to protect our water resources. The present research analyses the spatial variation of surface water and groundwater in and around the lakes of Hyderabad. Twenty-Seven lakes and their neighboring bore water samples are obtained for water quality monitoring. Samples are evaluated for specific physico-chemical parameters such as pH, Total Dissolved Solids (TDS), Cl, SO4, Na, K, Ca, Mg, and Total Hardness (TH). The spatial variation of water quality parameters for the 27 lakes and groundwater were analysed. Correlation and multiple regression analysis were carried out to determine comparative study of lake and ground water. The study found that most of the lakes were polluted and this had an impact on surrounding ground water.

Development of a Floating Buoy for Monitoring Ocean Environments (해양환경모니터링을 위한 표류부이 개발)

  • Yu, Yung-Ho;Gang, Yong-Soo;Lee, Won-Boo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.705-712
    • /
    • 2009
  • The state changes of ocean covered over 70% of earth surface are one of the greatest factor of weather catastrophe. Recently weather extraordinary events are followed by steep increase of sea water temperature and scientists in various fields are studying and warning the weather changes. In this paper, floating buoy is developed to monitor ocean environments via Orbcomm satellite and a method is proposed to increase measurement accuracy of sea water temperature with common low price temperature sensor. Experimental results are presented to illustrate the usability and effectiveness of the developed system. A web-based real time monitoring system is built to monitor ocean environmental information such as sea and air temperature, salinity according to the position of buoy through the internet for user convenience.

Understanding of Surface Water-Groundwater Connectivity in an Alluvial Plain using Statistical Methods (통계기법을 활용한 충적층내 지하수-지표수 연계 특성 해석)

  • Kim, Gyoo-Bum;Son, Young-Chul;Lee, Seung-Hyun;Jeong, An-Chul;Cha, Eun-Jee;Ko, Min-Jeong
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.207-221
    • /
    • 2012
  • A statistical analysis of time series of water level at 27 groundwater monitoring wells was conducted to analyze the surface water-groundwater connectivity in the wide alluvial plains surrounding the Nakdong River, Korea. Change in groundwater level is strongly related to river water level, yielding an average cross-correlation coefficient of 0.601, which is much higher than that between rainfall and groundwater level (0.125). Principal component analysis of groundwater level indicates that wells in the study area can be classified into two groups: wells in Group A are located close to a river, have water levels closely related to river level, and generally show a large increase in groundwater level during heavy rainfall. On the other hand, wells in Group B located far from a river are relatively less related to river level. Including hydrologic and statistical analyses, geochemical analysis and temperature monitoring are additionally required to reveal the relationship between surface water level and groundwater level, and to assess the possibility of groundwater flooding.

Long-term and Real-time Monitoring System of the East/Japan Sea

  • Kim, Kuh;Kim, Yun-Bae;Park, Jong-Jin;Nam, Sung-Hyun;Park, Kyung-Ae;Chang, Kyung-Il
    • Ocean Science Journal
    • /
    • v.40 no.1
    • /
    • pp.25-44
    • /
    • 2005
  • Long-term, continuous, and real-time ocean monitoring has been undertaken in order to evaluate various oceanographic phenomena and processes in the East/Japan Sea. Recent technical advances combined with our concerted efforts have allowed us to establish a real-time monitoring system and to accumulate considerable knowledge on what has been taking place in water properties, current systems, and circulation in the East Sea. We have obtained information on volume transport across the Korea Strait through cable voltage measurements and continuous temperature and salinity profile data from ARGO floats placed throughout entire East Sea since 1997. These ARGO float data have been utilized to estimate deep current, inertial kinetic energy, and changes in water mass, especially in the northern East Sea. We have also developed the East Sea Real-time Ocean Buoy (ESROB) in coastal regions and made continual improvements till it has evolved into the most up-to-date and effective monitoring system as a result of remarkable technical progress in data communication systems. Atmospheric and oceanic measurements by ESROB have contributed to the recognition of coastal wind variability, current fluctuations, and internal waves near and off the eastern coast of Korea. Long-tenn current meter moorings have been in operation since 1996 between Ulleungdo and Dokdo to monitor the interbasin deep water exchanges between the Japanese and Ulleung Basins. In addition, remotely sensed satellite data could facilitate the investigation of atmospheric and oceanic surface conditions such as sea surface temperature (SST), sea surface height, near-surface winds, oceanic color, surface roughness, and so on. These satellite data revealed surface frontal structures with a fairly good spatial resolution, seasonal cycle of SST, atmospheric wind forcing, geostrophic current anomalies, and biogeochemical processes associated with physical forcing and processes. Since the East Sea has been recognized as a natural laboratory for global oceanic changes and a clue to abrupt climate change, we aim at constructing a 4-D continuous real-time monitoring system, over a decade at least, using the most advanced techniques to understand a variety of oceanic processes in the East Sea.

Monitoring of Noxious Protozoa for Management of Natural Water Resources

  • Bahk, Young Yil;Cho, Pyo Yun;Ahn, Sung Kyu;Park, Sangjung;Jheong, Won Hwa;Park, Yun-Kyu;Shin, Ho-Joon;Lee, Sang-Seob;Rhee, Okjae;Kim, Tong-Soo
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.2
    • /
    • pp.205-210
    • /
    • 2018
  • Waterborne parasitic protozoa, particularly Giardia lamblia and Cryptosporidium spp., are common causes of diarrhea and gastroenteritis worldwide. The most frequently identified source of infestation is water, and exposure involves either drinking water or recreation in swimming pools or natural bodies of water. In practice, studies on Cryptosporidium oocysts and Giardia cysts in surface water are challenging owing to the low concentrations of these microorganisms because of dilution. In this study, a 3-year monitoring of Cryptosporidium parvum, Giardia lamblia, and Naegleria fowleri was conducted from August 2014 to June 2016 at 5 surface water sites including 2 lakes, 1 river, and 2 water intake plants. A total of 50 water samples of 40 L were examined. Cryptosporidium oocysts were detected in 22% of samples and Giardia cysts in 32%. Water at the 5 sampling sites was all contaminated with Cryptosporidium oocysts (0-36/L), Giardia cysts (0-39/L), or both. The geometric mean concentrations of Cryptosporidium and Giardia were 1.14 oocysts/L and 4.62 cysts/L, respectively. Thus, effective monitoring plans must take into account the spatial and temporal parameters of contamination because they affect the prevalence and distribution of these protozoan cysts in local water resources.

SURFACE DEFORMATION MONITORING USING TERRASAR-X INTERFEROMETRY

  • Kim, Sang-Wan;Wdowinski, Shimon;Dixon, Tim
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.422-425
    • /
    • 2008
  • TerraSAR-X is new radar satellite operated at X-band, multi polarization, and multi beam mode. Compared with C-band or L-band SAR, the X-band system inherently suffers from more temporal decorrelation, but is more sensitive to surface deformation monitoring due to short wavelength (3.1 cm) and high spatial resolution (1m-3m). It is generally expected that sensitivity to estimate surface movement using TerraSAR-X will be increased by the factor of 10, compared to current C-band system with low spatial resolution such as ERS-2, Envisat. Many urban areas are experiencing land subsidence due to water, oil and natural gas withdrawal, underground excavation, sediment compaction, and so on. Monitoring of surface deformation is valuable for effectively limiting damage areas. In addition high accuracy and spatially dense subsidence map can be achieved by X-band InSAR observation, promoting identification and separation of various subsidence processes and leading to enhanced understanding via mechanical modeling. In this study we will introduce some initial InSAR results using new TerraSAR-X SAR data for surface deformation monitoring.

  • PDF

Assessment of seasonal variations in water quality of Brahmani river using PCA

  • Mohanty, Chitta R.;Nayak, Saroj K.
    • Advances in environmental research
    • /
    • v.6 no.1
    • /
    • pp.53-65
    • /
    • 2017
  • Assessment of seasonal changes in surface water quality is an important aspect for evaluating temporal variations of river pollution due to natural or anthropogenic inputs of point and non-point sources. In this study, surface water quality data for 15 physico-chemical parameters collected from 7 monitoring stations in a river during the years from 2014 to 2016 were analyzed. The principal component analysis technique was employed to evaluate the seasonal correlations of water quality parameters, while the principal factor analysis technique was used to extract the parameters that are most important in assessing seasonal variations of river water quality. Analysis shows that a parameter that is most important in contributing to water quality variation for one season may not be important for another season except alkalinity, which is always the most important parameters in contributing to water quality variations for all three seasons.