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Infectious parasitic diseases, once considered eliminated 
from the list of public health issues, remain a major cause of 
severe illnesses worldwide. Epidemiological parameters such 
as dramatic changes in technology, travel, and the environ-
ment, particularly climate change, together with the dimin-
ished effectiveness of certain measures of disease control, have 
propelled our society into a new era of parasitoses. The spec-
trum of infectious parasitoses is once again expanding. During 
diagnosis and treatment, however, most clinicians disregard 
protozoan infections in diarrheal patients and instead focus 
on pathogenic viruses and bacteria. Waterborne protozoan 
diseases have become an unarguable global public health 
problem and are major factors in epidemic and endemic dis-
eases [1]. Waterborne outbreaks of cryptosporidiosis and giar-

diasis have been reported in several countries [6-8]. At present, 
infections caused by Giardia lamblia account for 2.8×108 cases 
of diarrhea annually [9]. One of the major outbreaks occurred 
in 1993 as a waterborne gastroenteritis epidemic in Milwau-
kee, Wisconsin, which was attributed to the presence of Crypto-
sporidium parvum oocysts in drinking water supplied by a local 
water treatment plant [2,3]. This protozoan is one of the main 
causes of 4 billion cases of diarrhea, which is one of the 5 
most common disease factors in death, causes 21% of deaths 
in children under 5 years of age, and is now recognized as a 
major global epidemic [4,5].

The most prevalent waterborne protozoan parasitoses caus-
ing diarrhea are cryptosporidiosis and giardiasis. Cryptosporidi-
um and Giardia are protozoa that have environmental stages of 
the life cycle (oocyst and cyst) that are excreted into the host 
feces. In Korea, a nationwide survey of protozoan infestation 
among diarrheal patients was conducted during 2004-2006 
[10] and showed that the prevalence of protozoan cysts was 129 
per 10,000 individuals, and among pediatric diarrheal patients, 
C. parvum was often accompanied by a rotavirus (29.5%). In 
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Abstract: Waterborne parasitic protozoa, particularly Giardia lamblia and Cryptosporidium spp., are common causes of di-
arrhea and gastroenteritis worldwide. The most frequently identified source of infestation is water, and exposure involves 
either drinking water or recreation in swimming pools or natural bodies of water. In practice, studies on Cryptosporidium 
oocysts and Giardia cysts in surface water are challenging owing to the low concentrations of these microorganisms be-
cause of dilution. In this study, a 3-year monitoring of Cryptosporidium parvum, Giardia lamblia, and Naegleria fowleri was 
conducted from August 2014 to June 2016 at 5 surface water sites including 2 lakes, 1 river, and 2 water intake plants. A 
total of 50 water samples of 40 L were examined. Cryptosporidium oocysts were detected in 22% of samples and Giardia 
cysts in 32%. Water at the 5 sampling sites was all contaminated with Cryptosporidium oocysts (0-36/L), Giardia cysts (0-
39/L), or both. The geometric mean concentrations of Cryptosporidium and Giardia were 1.14 oocysts/L and 4.62 cysts/L, 
respectively. Thus, effective monitoring plans must take into account the spatial and temporal parameters of contamination 
because they affect the prevalence and distribution of these protozoan cysts in local water resources.
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addition, the unknown pathogens responsible for outbreaks 
in more than 12% cases of foodborne illnesses reportedly in-
clude manifold protozoa [11]. Most of these protozoa use the 
fecal-oral route of transmission to reach new hosts directly via 
infested individuals or contaminated fomites or through in-
gestion of cysts with contaminated food or water [12].

The economic burden of these diseases is considerable. Fur-
thermore, climate change is likely to influence the prevalence 
of protozoan parasitoses among humans. The opinion of clin-
ical experts is that diseases caused by emerging or resurging 
protozoa will dramatically increase in prevalence. The impact 
on noxious protozoa may be the most serious consequence of 
climate change in the public health domain. Widespread resis-
tance to insecticides and drugs and genetic changes in patho-
gens are expected to be critical consequences as well. There-
fore, Cryptosporidium and Giardia constitute key threats to pub-
lic health, even in developed countries.

It is important to establish a management strategy based on 
the results of testing of water for contamination in relevant 
sources. Here, we report the results on long-term monitoring 
of noxious protozoa—C. parvum, G. lamblia, and Naegleria 

fowleri—for establishment of a water security management sys-
tem.

Cryptosporidium is a protozoan parasite associated with diar-
rheal illness in most parts of the world and is a frequent cause 
of travelers’ diarrhea. Infestation is mediated by the ingestion 
of sporulated oocysts transmitted via the fecal–oral route. 
These oocysts are remarkably resistant to common disinfec-
tants and to routine chlorination of drinking water. Giardia is a 
binucleated flagellate protozoan that can exist in cyst form for 
days. It is also a cosmopolitan enteric parasite with a wide host 
range that includes domestic and wild animals as well as hu-
mans. Giardia is a common cause of gastrointestinal diseases 
and waterborne diarrhea worldwide. This protozoan is trans-
mitted through the ingestion of cysts, and travelers can con-
tract giardiasis in endemic areas. Infestation is commonly as-
ymptomatic, but mild to moderate self-limiting diarrhea oc-
curs in some cases. N. fowleri, known as the “brain-eating 
amoeba,” is a free-living, bacteria-eating amoeba that may be 
pathogenic. It causes a fulminant brain infection called naegle-
riasis, also known as primary amoebic meningoencephalitis, 
and is typically found in warm freshwater bodies such as 
ponds, lakes, rivers, and hot springs [13].

For all the protozoa analyzed in this study, the most com-
monly identified nonhuman source of infestation is water: ei-

ther drinking water or recreational exposure in swimming 
pools [14-16]. The objective of the present study was to identi-
fy sources of contaminated water for future implementation of 
short- and long-term control measures. Available studies on 
these 3 protozoa pertain to their prevalence in hosts and in 
drinking water rather than in the environment [17-20]. Here, 
we describe the results of an investigation of the prevalence of 
C. parvum, G. lamblia, and N. fowleri in surface water resources 
and highlight the problem of their timely detection.

A catchment scale investigation of the prevalence of these 
microorganisms was carried out. Water samples were collected 
every other month: 10 times from August 2014 to June 2016. 
Five surface water sampling sites were employed: 2 lakes (So-
yang lake [K3] in Gangwon-do and Juam lake [K4] in Jeolla-
nam-do), the Geum river (Hyundo bridge [K5] at Shintanjin-
dong in Daejeon), and 2 water intake plants (Guui [K1] on 
the Han river in Seoul and Mae-ri [K2] on the Nakdong river 
in Gimhae-si) (Fig. 1).

The water was sampled at the surface at a distance from the 
shore where the water depth was approximately waist high (~1 
m). Each sample (40 L) was collected at a 3-m distance from 
the shore. The water samples were filtered through a 3-µm ni-
trocellulose membrane in a filter housing with 30 psi pressure. 

Fig. 1. Locations of the sampling sites in Korea denoting the ab-
sence or presence of Cryptosporidium parvum, Giardia lamblia, 
and/or Naegleria fowleri. K1, Guui water intake plant on Han river 
in Seoul; K2, Mae-ri water intake plant on Nakdong river in Gim-
hae; K3, So-yang lake; K4, Juam lake; K5, Geum river in Dae-
jeon. Green circle represents the sampling sites in water intake 
plant, and blue circle represents the lake and river.
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Each 40 L sample was processed individually. The nitrocellu-
lose membranes containing protozoa were transported to our 
laboratory in Incheon and stored at 4˚C until analysis.

The nitrocellulose membranes were finely chopped in 1 ml 
of PBS to extract protozoan cysts and/or oocysts from each 
membrane by vigorous vortexing. The resultant PBS samples 
were centrifuged at 12,000 g for 30 min, and the pellet was 
subjected to a protozoa detection assay. Genomic DNA was 
extracted directly from the pellets using the QIAamp DNA 
Stool Mini Kit (Qiagen, Hilden, Germany). Direct fluorescent 
antibody (DFA) tests and enzyme immunoassays, which de-
tect intact microorganisms and soluble stool antigens, respec-
tively, were performed to detect C. parvum oocysts and G. lam-

blia cysts [21].
Conventional microscopy, culturing, and antigen detection 

are limited by relatively low sensitivity and specificity. Poly-
merase chain reaction (PCR) is a more effective method not 
only for epidemiological studies but also as a tool for highly 
sensitive detection of contamination [22]. In practice, micro-
scopic examination is useful, and its application is mandatory 
for the diagnosis of intestinal parasitoses. Nevertheless, diag-
nostic sensitivity of microscopic methods is estimated to be 
60% [23]. To identify C. parvum oocysts and G. lamblia cysts, 
an immunofluorescent assay based on fluorescently labeled 
mouse monoclonal antibodies was conducted (Crypto Cel IFA 
test kit and Giardia Cel IFA test kit; Cellabs, Sydney, Australia) 

(Fig. 2). PCR was carried out to amplify protozoan DNA with-
in 72 hr after sample collection [24]. The noxious protozoa in 
water were detected by means of fluorescently labeled anti-
bodies. The test-positive material that reacted with a fluores-
cent antibody in the assay appeared as greenish oval or spheri-
cal particles with bright edges.

The primer sets for PCR amplification were complementary 
to the Cryptosporidium 18S ribosomal RNA gene sequence 
(AWA722F: 5́ -AGTGCTTAAAGCAGGCAACTG-3́  AWA1235R: 
5́ -CGTTAACGGAATTAACC- AGAC-3́ ) or Cryptosporidium oo-
cyst wall protein (COWP) for nested PCR procedures (Cry-15: 
5´-GTAGATAATGGAAGAGATTGTG-3´, CRY-9: 5´-GGACT-
GAAATACAGGCATTATCTTG-3´, COWPnestF1: 5´-TGT-
GTTCAATCAGACACAGC-3´ and COWPnestR2: 5´-TCTGAT-
TATCCTGGTGGGC-3́ ) [25]. For Giardia, the primer sets were 
complementary to the Giardia 16S ribosomal RNA gene se-
quence (RH-11: 5´-CATCCGGTCGATC- CTGCC-3´, RH-4: 
5́ -AGTCGAACCCTGATTCTCCGCCAGG-3́ ) and the intergenic 
spacer region (IGS) for nested PCR (AS1: 5´-CGACCGGGA-
CACGATCCTGCC-3´, AS2: 5´-AGGACTGCATATCACGGC-3´, 
IGSnestF: 5´-AGAGCAGCCGATCCCCCG-3´ and IGSnestR: 
5́ -AATTGGAGGCTGACTGTG-3́ ) [26].

To detect N. fowleri, we performed PCR amplification of the N. 

fowleri Nfa1 gene with the following primer set: Nfa1-F, 5́ -ATG-
GCCACTACTATTCCATCACCA-3́ ; Nfa1-R, 5́ -AAGCACTCCCTT-
GTACTTCAT-3́ . Besides, the water samples were analyzed for 

Fig. 2. Photomicrographs of immunofluorescent assay of Cryptosporidium parvum and Giardia lamblia. (A-C), Cryptosporidium parvum. 
(A) February 2015, So-yang lake. (B) April 2015, Geum river. (C) June 2015, Geum river. (D-F), Giardia lamblia. (D) August 2014, Mae-ri. 
(E) April 2015, So-yang lake. (F) June 2015, Juam lake. (×1,000 magnifications).
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total culturable protozoa on an Escherichia coli lawn culture 
plate of a non-nutrient agar medium (0.01% yeast extract and 
1.5% agar) [27]. As a result of culturing for 2-4 days, N. fowleri 
in trophozoite or cyst form was not detected in any water sam-

ples by the by direct fluorescence assay (DFA) and PCR.
All water samples from the 5 sites in this study were con-

taminated with Cryptosporidium oocysts, Giardia cysts, or both 
at various concentrations (Table 1). The samples obtained in 

Table 1. Occurrence of Cryptosporidium and Giardia at 5 water sampling sites (2014-2016)					   

Date Sampling site
Cryptosporidium parvum Giardia lamblia

DFA test PCR test DFA test PCR test

August 2014 K1: Guui (WIP)
K2: Mae-ri (WIP)
K3: So-yang lake
K4: Juam lake
K5: Geum river

-
-
-
-
-

-
-
-
-
-

-
Positive

-
Positive

-

-
Positive
Positive
Positive
Positive

October 2014 Guui (WIP)
Mae-ri (WIP)
So-yang lake
Juam lake
Geum river

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-

Positive
-

December 2014 Guui (WIP)
Mae-ri (WIP)
So-yang lake
Juam lake
Geum river

-
-
-
-
-

-
-
-
-
-

-
-
-

Positive
-

-
-
-

Positive
-

February 2015 Guui (WIP)
Mae-ri (WIP)
So-yang lake
Juam lake
Geum river

-
-

Positive
-
-

-
-

Positive   
-
-

-
Positive
Positive

-
-

-
Positive
Positive

-
-

April 2015 Guui (WIP)
Mae-ri (WIP)
So-yang lake
Juam lake
Geum river

-
-
-
-

Positive

-
-
-

Positive
Positive

Positive
Positive
Positive
Positive
Positive

Positive
Positive
Positive
Positive
Positive

June 2015 Guui (WIP)
Mae-ri (WIP)
So-yang lake
Juam lake
Geum river

-
-
-
-

Positive

-
-
-
-

Positive

Positive
-
-

Positive
-

Positive
Positive

-
Positive

-
December 2015 Guui (WIP)

Mae-ri (WIP)
So-yang lake
Juam lake
Geum river

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

February 2016 Guui (WIP)
Mae-ri (WIP)
So-yang lake
Juam lake
Geum river

-
-
-
-
-

-
-

Positive
Positive

-

-
-
-
-
-

-
-
-
-
-

April 2016 Guui (WIP)
Mae-ri (WIP)
So-yang lake
Juam lake
Geum river

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
-
-
-
-

June 2016 Guui (WIP)
Mae-ri (WIP)
So-yang lake
Juam lake
Geum river

-
-
-
-
-

-
-
-
-
-.

-
-
-
-
-

Positive
Positive
Positive
Positive
Positive

DFA, direct fluorescent antibody; WIP, water intake plant.					   
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August and December 2014, December 2015, April 2016, and 
June 2016 tested negative for Cryptosporidium contamination; 
however, C. parvum oocysts were detected in some samples 
collected in February and June 2015 and February 2016. The 
April 2016 samples from Juam lake and the February 2016 
samples from both lakes under study tested positive in the 
PCR assays. G. lamblia cysts were continuously detected in 
samples collected between August 2014 and June 2015. Those 
from So-yang lake and the Geum river in August 2014 and 
from Lake Juam in October 2014 tested positive in the PCR as-
say. By contrast, the water samples obtained from the 5 sites 
between December 2015 and April 2016 tested negative for 
both C. parvum and G. lamblia according to the DFA analysis, 
but some tested positive in the PCR analysis. In particular, the 
samples collected in February 2016 from the 5 sites were test-
positive only according to the results of PCR.

For quantitative analysis, Cryptosporidium and Giardia were 
first identified and enumerated by means of an immunofluo-
rescent reaction in accordance with their sizes and morpho-
logical features. Briefly, 40 L of water collected from each sam-
pling site was transported, filtered on the same day of collec-
tion, and concentrated to a final volume of 3 ml. Twenty-five 
microliters of the final filtrate was used in the immunofluores-
cence microscopy analysis for counting. The results of the re-
covery of Cryptosporidium and Giardia from 40 L raw-water 
samples are presented in Table 2.

The highest concentration of Cryptosporidium (36 oocysts/L), 
which was identified with the microscopic tools and fluores-

cently labeled antibodies as well as PCR, was detected in Febru-
ary 2015 in So-yang lake. The samples from the Geum river ob-
tained in April 2015 and June 2015 contained Cryptosporidium 
at 9 and 12 oocysts/L, respectively. With respect to Giardia, al-
though the concentrations of cysts in the water samples varied 
(9-39 cysts/L), the highest concentration of Giardia (39 cysts/L), 
which was identified by the DFA and PCR analyses, was detect-
ed in August 2014, April 2015, and June 2015 in Juam lake, 
which was the most frequently sampled site (4 of 5 sampling 
time points; see Table 2). The lowest concentration of con-
firmed Giardia cysts (9 cysts/L) was observed at the sampling 
sites near the 2 water intake plants (Guui and Mae-ri). Between 
August 2014 and June 2016, the geometric mean concentra-
tions of Cryptosporidium and Giardia according to DFA and PCR 
analyses were 1.14 oocysts/L and 4.62 cysts/L, respectively. 

Environmental pollution is now considered a global issue. 
Water contamination, a lack of safe drinking water, and im-
proper disposal of waste residues can lead to serious public 
health problems. The data from the catchment scale survey in 
this work will help with identifying and prioritizing the next 
steps for identifying sources of contamination and elucidating 
the processes that underpin microbial dissemination. The 
prevalence of Cryptosporidium, Giardia, and Naegleria at the 
study sites is crucial because these sites are the principal sourc-
es of drinking water for several provinces in Korea.

Researchers and clinicians should be aware of the widely re-
ported 1993 Milwaukee cryptosporidiosis outbreak that affect-
ed more than 400,000 individuals [2,3,6]. Some time ago, mi-
crobiological tests at water treatment and purification plants 
were reinforced with the rigorous Water Supply and Water-
works Installation Act and Guide for Water Treatment (pub-
lished in February 2007). Although our results show that each 
protozoan under study is not always detected in all water 
sources, the potential risks of cryptosporidiosis and giardiasis 
must be taken into account. Thus, effective monitoring plans 
must consider that the spatial and temporal parameters of 
contamination affect the prevalence and distribution of these 
3 protozoans in local water resources.
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12
Giardia

August 2014
K2: Mae-ri 39
K4: Juam lake 12

December 2014 K4: Juam lake 15
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April 2015
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K3: So-yang lake 21
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K5: Geum river 30

June 2015
K1: Guui 9
K4: Juam lake 12
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