• Title/Summary/Keyword: surface textured

Search Result 297, Processing Time 0.073 seconds

Study of LST Surface Modification effect on friction and wear at lubricating condition

  • Tripathi, Khagendra;Joshi, Bhupendra;Gyawali, Gobinda;Kim, Seung-Ho;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.182-183
    • /
    • 2014
  • Hemispherical dimples with diameter, ø=$60{\mu}m$ and depth, d= $30{\mu}m$ were created on the metal and ceramics surfaces using INYA 10 watt Laser of 1064 nm wavelength. This study reports the influence of dimple pitch on friction and wear behavior rather than dimple size, depth and density. LST was performed on the specimens with dimple pitch and density in the range of 80 to-$200{\mu}m$ and 44 to 7 %, respectively. Surface topography was analyzed by using roughness measurement, scanning electron microscopy (SEM), and optical microscopy. Friction and wear characteristics were analyzed on textured surfaces at lubricating environment to observe the effect of surface texturing on reduction of friction and wear. Reduction on coefficient of friction was achieved by more than 70% due to the dual behavior of dimples as wear (debris) traps and lubricant reservoirs. Wear reduced significantly for the textured surface as compared to the polished surface. Moreover, the friction coefficient of the textured specimens reduced with increasing load and speed which may be attributed to the transition of lubrication regime.

  • PDF

Effects of Glass Texturing Structure on the Module Efficiency of Heterojunction Silicon Solar Cells

  • Park, Hyeongsik;Lee, Yoo Jeong;Shin, Myunghun;Lee, Youn-Jung;Lee, Jaesung;Park, Changkyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.102-108
    • /
    • 2018
  • A glass-texturing technique was developed for photovoltaic (PV) module cover glass; periodic honeycomb textures were formed by using a conventional lithography technique and diluted hydrogen fluoride etching solutions. The etching conditions were optimized for three different types of textured structures. In contrast to a flat glass substrate, the textured glasses were structured with etched average surface angles of $31-57^{\circ}$, and large aspect ratios of 0.17-0.47; by using a finite difference time-domain simulation, we show that these textured surfaces increase the amount of scattered light and reduce reflectance on the glass surface. In addition, the optical transmittance of the textured glass was markedly improved by up to 95% for wavelengths ranging from 400 to 1100 nm. Furthermore, applying the textured structures to the cover glass of the PV module with heterojunction with intrinsic thin-layer crystalline silicon solar cells resulted in improvements in the short-circuit current density and module efficiency from 39 to $40.2mA/cm^2$ and from 21.65% to 22.41%, respectively. Considering these results, the proposed method has the potential to further strengthen the industrial and technical competitiveness of crystalline silicon solar cells.

Experimental Investigation of Concave and Convex Micro-Textures for Improving Anti-Adhesion Property of Cutting Tool in Dry Finish Cutting

  • Kang, Zhengyang;Fu, Yonghong;Chen, Yun;Ji, Jinghu;Fu, Hao;Wang, Shulin;Li, Rui
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.583-591
    • /
    • 2018
  • Tool-chip adhesion impacts on cutting performance significantly, especially in finish cutting process. To promote cutting tools' anti-adhesion property, the concave micro-grooves texture (MGT) and convex volcano-like texture (VLT) were fabricated separately on lathe tools' rake faces by laser surface texturing (LST). Various orientations of MGT and different area densities (9% and 48%) and regions (partial and full) of VLT were considered in textured patterns designing. The following orthogonal cutting experiments, machining of aluminum alloy 5038, analyzed tools' performances including cutting force, cutting stability, chip shape, rake face adhesion and abrasion. It indicated that under dry finish cutting conditions, MGT contributed to cutting stability and low cutting forces, meanwhile friction and normal force reduced by around 15% and 10%, respectively with a weak correlation to the grooves' orientation. High density VLT tools, on the other hand, presented an obvious anti-adhesion property. A $5{\mu}m$ reduction of crater wear's depth can be observed on textured rake faces after long length cutting and textured rake faces presented half size of BUE regions comparing to the flat tool, however, once the texture morphologies were filled or worn, the anti-adhesion effect could be invalid. The bearing ratio curve was employed to analysis tool-chip contact and durability of textured surfaces contributing to a better understanding of anti-adhesion and enhanced durability of the textured tools.

Double Texturing of Glass Substrate and ZnO : Al Transparent Electrode Surfaces for High Performance Thin Film Solar Cells (고성능 박막태양전지를 위한 유리 기판 및 산화 아연 투명 전극의 2중 구조 표면 조직화 공정 연구)

  • Kang, Dong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1230-1235
    • /
    • 2017
  • We studied surface texture-etching of glass substrate by using reactive ion etching process with various working pressure (0.7~9.0 mT). With the increase in the pressure, a haze parameter, which means diffusive transmittance/total transmittance, was increased in overall wavelength regions, as measured by spectrophotometer. Also, atomic force microscopy (AFM) study also showed that the surface topography transformed from V-shaped, keen surface to U-shaped, flattened surface, which is beneficial for nanocrystalline silicon semiconductor growth with suppressing defective crack formation. The texture-etched ZnO:Al combined with textured glass exhibited pronounced haze properties that showed 60~90 % in overall spectral wavelength regions. This promising optical properties of double textured, transparent conducting substrate can be widely applied in silicon thin film photovoltaics and other optoelectronic devices.

The Deposition and Properties of Surface Textured ZnO:Al Films (표면 텍스쳐된 ZnO:Al 투명전도막 증착 및 특성)

  • 유진수;이정철;김석기;윤경훈;박이준;이준신
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.378-382
    • /
    • 2003
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure md the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures ($\leq$$300^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

Improvement of haze ratio of DC-sputtered ZnO:Al thin films through HF vapor texturing

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.319.1-319.1
    • /
    • 2016
  • Recently, the Al-doped ZnO (ZnO:Al) films are intensively used in thin film a-Si solar cell applications due to their high transmittance and good conductivity. The textured ZnO:Al films are used to enhance the light trapping in thin film solar cells. The wet etch process is used to texture ZnO:Al films by dipping in diluted acidic solutions like HCl or HF. During that process the glass substrate could be damaged by the acidic solution and it may be difficult to apply it for the inline mass production process since it has to be done outside the chamber. In this paper we report a new technique to control the surface morphology of RF-sputtered ZnO:Al films. The ZnO:Al films are textured with vaporized HF formed by the mixture of HF and H2SiO3 solution. Even though the surface of textured ZnO:Al films by vapor etching process showed smaller and sharper surface structures compared to that of the films textured by wet etching, the haze value was dramatically improved. We achieved the high haze value of 78% at the wavelength of 540 nm by increasing etching time and HF concentration. The haze value of about 58% was achieved at the wavelength of 800 nm when vapor texturing was used. The ZnO:Al film texture by HCl had haze ratio of about 9.5 % at 800 nm and less than 40 % at 540 nm. In addition to low haze ratio, the texturing by HCl was very difficult to control etching and to keep reproducibility due to its very fast etching speed.

  • PDF

Long-Term Performance of Geomembranes by Oxidative Induction Time

  • Jeon, Han-Yong;Kim, Hong-Kwan;Keum, Jae-Ho;Jang, Yong-Chea;Lyoo, Won-Seok;Ghim, Han-Do
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.3
    • /
    • pp.19-24
    • /
    • 2003
  • Long-term performance of smooth and textured type HDPE geomembranes which were used to the liner and slope systems of waste landfills was examined. Artificial surface defects were added to the surface of geomembranes by scratch addition apparatus specially designed. The mechanical and frictional properties, chemical and ultra violet light resistances and oxidative induction time(OIT) of geomembranes were examined for the cases of defective/non-defective surfaces. Frictional properties of textured type geomembranes showed more excellent than those of smooth type geomembranes. Finally, it was known that the long-term performance of non-defective and textured geomembranes was better than that of defective geomembranes through chemical and UV resistance and OIT tests etc.

  • PDF

THD Lubrication Analysis of a Surface-Textured Parallel Thrust Bearing with Rectangular Grooves: Part 2 - Effect of Groove Depth (사각형 그루브로 Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 제2보 - 그루브 깊이의 영향)

  • TaeJo Park;JeongGuk Kang
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2023
  • Surface texturing is widely applied to friction surfaces of various machine elements. Most of the theoretical studies have focused on isothermal (ISO) analyses which consider constant lubricant viscosity. However, there have been limited studies on the effect of oil temperature increase owing to viscous shear. Following the first part of the present study that investigated the effects of film-temperature boundary condition (FTBC) and groove number on the thermohydrodynamic (THD) lubrication characteristics of a surface-textured parallel thrust bearing with multiple rectangular grooves, this study focuses on the effect of groove depths. Current study numerically analyzes the continuity, Navier-Stokes, and energy equations with temperature-viscosity-density relations using a commercial computational fluid dynamics (CFD) software, FLUENT. The results of variation in temperature, velocity, and pressure distributions as well as load-carrying capacity (LCC) and friction force indicate that groove depth and FTBC significantly influence the temperature distribution and pressure generation. The LCC is maximum near the groove depth at which the vortex starts, smaller than the ISO result. For intense grooves, the LCC of THD may be larger than that from ISO. The frictional force decreases as the groove becomes deeper, and decreases more significantly in the case of THD. The study shows that groove depth significantly influences the THD lubrication characteristics of surface-textured parallel thrust bearings.

The Resistance Spot Weldability of surface roughness textured cold-rolled steel sheet (표면조도처리 강판의 점용접성에 관한 고찰)

  • Kim, Gi-Hong;Park, Sang-Sun;Park, In-Cheol;Kim, Seong-Won;Sin, Byeong-Hyeon;Choe, Yeong-Min;Park, Yeong-Do
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.342-344
    • /
    • 2007
  • The resistance spot weldability of surface textured cold-rolled steel sheet was evaluated. One steel sheet(T4.5) showed reduced electrode life with less than 2000 welds, and all other steel sheets(E2.2, E4.5, T2.2) made more than 2500 welds. The carbon imprint test revealed that there is sudden electrode diameter increase around 1700 welds. It is believed that the increased electrode diameter decreased current density, and resulted in decreasing weld electrode life due to small weld button size. It is considered that surface roughness difference may attribute to heating during weld cycle and reduced the weld electrode life.

  • PDF