• Title/Summary/Keyword: surface textured

Search Result 297, Processing Time 0.029 seconds

Study of SF6/Ar plasma based textured glass surface morphology for high haze ratio of ITO films in thin film solar cell

  • Kang, Junyoung;Hussain, Shahzada Qamar;Kim, Sunbo;Park, Hyeongsik;Le, Anh Huy Tuan;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.430.2-430.2
    • /
    • 2016
  • The front transparent conductive oxide (TCO) films in thin fill solar cell should exhibit high transparency, conductivity, good surface morphology and excellent light scattering properties. The light trapping phenomenon is limited due to random surface structure of TCO films. The proper control of surface structure and uniform cauliflower TCO films may be appropriate for efficient light trapping. We report light trapping scheme of ICP-RIE glass texturing by SF6/Ar plasma for high roughness and haze ratio of ITO films. It was observed that the variation of etching time, pattern size and Ar flow ratio during ICP-RIE process were important factors to improve the diffused transmittance and haze ratio of textured glass. The ICP-RIE textured glass showed low etching rates due to the presence of metal elements like Al, B, F and Na. The ITO films deposited on textured glass substrates showed the high RMS roughness and haze ratio in the visible wavelength region. The change in surface morphology showed negligible influence on electrical and structural properties of ITO films. The ITO films with high roughness and haze ratio can be used to improve the performance of thin film solar cells.

  • PDF

Characterization of Surface Morphology and Light Scattering of Transparent Conducting ZnO:Al Films as Front Electrode for Silicon Thin Film Solar Cells (실리콘 박막 태양전지 전면 전극용 ZnO : Al 투명전도막의 표면형상 및 산란광 특성)

  • Kim, Young-Jin;Cho, Jun-Sik;Lee, Jeong-Chul;Wang, Jin-Suk;Song, Jin-Soo;Yoon, Kyung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.245-252
    • /
    • 2009
  • Changes in the surface morphology and light scattering of textured Al doped ZnO thin films on glass substrates prepared by rf magnetron sputtering were investigated. As-deposited ZnO:Al films show a high transmittance of above 80% in the visible range and a low electrical resistivity of $4.5{\times}10^{-4}{\Omega}{\cdot}cm$. The surface morphology of textured ZnO:Al films are closely dependent on the deposition parameters of heater temperature, working pressure, and etching time in the etching process. The optimized surface morphology with a crater shape is obtained at a heater temperature of $350^{\circ}C$, working pressure of 0.5 mtorr, and etching time of 45 seconds. The optical properties of light transmittance, haze, and angular distribution function (ADF) are significantly affected by the resulting surface morphologies of textured films. The film surfaces, having uniformly size-distributed craters, represent good light scattering properties of high haze and ADF values. Compared with commercial Asahi U ($SnO_2$:F) substrates, the suitability of textured ZnO:Al films as front electrode material for amorphous silicon thin film solar cells is also estimated with respect to electrical and optical properties.

Photoelectrochemical Hydrogen Production on Textured Silicon Photocathode

  • Oh, Il-Whan
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.191-195
    • /
    • 2011
  • Wet chemical etching methods were utilized to conduct Si surface texturing, which could enhance photoelectrochemical hydrogen generation rate. Two different etching methods tested, which were anisotropic metal-catalyzed electroless etching and isotropic etching. The Si nano-texture that was fabricated by the anisotropic etching showed ~25% increase in photocurrent for H2 generation. The photocurrent enhancement was attributed to the reduced reflection loss at the nano-textured Si surface, which provided a layer of intermediate density between water and the Si substrate.

Present Status of Thin Film Solar Cells Using Textured Surfaces: A Brief Review

  • Park, Hyeongsik;Iftiquar, S.M.;Le, Anh Huy Tuan;Ahn, Shihyun;Kang, Junyoung;Kim, Yongjun;Yi, Junsin;Kim, Sunbo;Shin, Myunghun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.275-279
    • /
    • 2016
  • This is a brief review on light trapping in Si based thin film solar cells with textured surfaces and transparent conducting oxide front electrodes. The light trapping scheme appears to be essential in improving device efficiency over 10%. As light absorption in a thin film solar cells is not sufficient, light trapping becomes necessary to be effectively implemented with a textured surface. Surface texturing helps in the light trapping, and thereby raises short circuit current density and its efficiency. Such a scheme can be adapted to single junction as well as tandem solar cell, amorphous or micro-crystalline devices. A tandem cell is expected to have superior performance in comparison to a single junction cell and random surface textures appears to be preferable to a periodic structures.

Porous Si Layer by Electrochemical Etching for Si Solar Cell

  • Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.616-621
    • /
    • 2009
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

Characterization of Surface Textured Silicon Substrates by SF6/O2 Gas Mixture (SF6/O2 혼합가스에 의한 실리콘 웨이퍼의 표면 텍스쳐링 특성)

  • Kang, Min-Seok;Joo, Sung-Jae;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.345-348
    • /
    • 2012
  • The optical losses associated with the reflectance of incident radiation are among the most important factors limiting the efficiency of a solar cell. Therefore, photovoltaic cells normally require special surface structures or materials, which can reduce reflectance. In this study, nano-scale textured structures with anti-reflection properties were successfully formed on silicon. The surface of sicon wafer was etched by the inductively coupled plasma process using the gaseous mixture of $SF_6+O_2$. We demonstrate that the reflection characteristic has significantly reduced by ~0% compared with the flat surface. As a result, the power efficiency $P_{max}$ of the nano-scale textured silicon solar cell were enhanced up to 20%, which can be ascribed primarily to the improved light trapping in the proposed nano-scale texturing.

Investigation of the crystalline silicon solar cells with porous silicon layer (다공성 실리콘 막을 적용한 결정질 실리콘 태양전지 특성 연구)

  • Lee, Eun-Joo;Lee, Il-Hyung;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.295-298
    • /
    • 2007
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating(ARC) and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si ARC layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layers were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The structure of porous Si layers was investigated with SEM. The formation of a nanoporous Si layer about 100nm thick on the textured silicon wafer result in a reflectance lower than 5% in the wavelength region from 500 to 900nm. Such a surface modification allows improving the Si solar cell characteristics. An efficiency of 13.4% is achieved on a monocrystalline silicon solar cell using the electrochemical technique.

  • PDF

Ni-assisted Fabrication of GaN Based Surface Nano-textured Light Emitting Diodes for Improved Light Output Power

  • Mustary, Mumta Hena;Ryu, Beo Deul;Han, Min;Yang, Jong Han;Lysak, Volodymyr V.;Hong, Chang-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.454-461
    • /
    • 2015
  • Light enhancement of GaN based light emitting diodes (LEDs) have been investigated by texturing the top p-GaN surface. Nano-textured LEDs have been fabricated using self-assembled Ni nano mask during dry etching process. Experimental results were further compared with simulation data. Three types of LEDs were fabricated: Conventional (planar LED), Surface nano-porous (porous LED) and Surface nano-cluster (cluster LED). Compared to planar LED there were about 100% and 54% enhancement of light output power for porous and cluster LED respectively at an injection current of 20 mA. Moreover, simulation result showed consistency with experimental result. The increased probability of light scattering at the nano-textured GaN-air interface is the major reason for increasing the light extraction efficiency.

Preparation and characterization of TiO2 anti-reflective layer for textured Si (100)

  • Choe, Jin-U;Nam, Sang-Hun;Jo, Sang-Jin;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.322-322
    • /
    • 2010
  • Recently, anti-reflective films (AR) are one of the most studied parts of a solar cell since these films improve the efficiency of photovoltaic devices. Also, anti-reflection films on the textured silicon solar cells reduce the amount of reflection of the incident light, which improves the device performance due to light trapping of incident light into the cell. Therefore, we preformed two step processes to get textured Si (100) substrate in this experiment. Pyramid size of textured silicon had approximately $2{\sim}9\;{\mu}m$. A well-textured silicon surface can lower the reflectance to 10%. For more reduced reflection, TiO2 anti-reflection films on the textured silicon were deposited at $600^{\circ}C$ using titanium tetra-isopropoxide (TTIP) as a precursor by metal-organic chemical vapor deposition (MOCVD), and the deposited TiO2 layers were then treated by annealing for 2 h in air at 600 and $1000^{\circ}C$, respectively. In this process, the treated samples by annealing showed anatase and rutile phases, respectively. The thickness of TiO2 films was about $75{\pm}5\;nm$. The reflectance at specific wavelength can be reduced to 3% in optimum layer.

  • PDF