• Title/Summary/Keyword: surface stress effects

Search Result 647, Processing Time 0.026 seconds

Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory

  • Shariati, Ali;Barati, Mohammad Reza;Ebrahimi, Farzad;Toghroli, Ali
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.191-202
    • /
    • 2020
  • The article brings the study of nonlocal, surface and the couple stress together to apparent the frequency retaliation of FG nanobeams (Functionally graded). For the examination of frequency retaliation, the article considers the accurate spot of neutral axis. This article aims to enhance the coherence of proposed model to accurately encapsulate the significant effects of the nonlocal stress field, size effects together with material length scale parameters. These considered parameters are assimilated through what are referred to as modified couple stress as well as nonlocal elasticity theories, which encompasses the stiffness-hardening and softening influence on the nanobeams frequency characteristics. Power-law distribution is followed by the functional gradation of the material across the beam width in the considered structure of the article. Following the well-known Hamilton's principle, fundamental basic equations alongside their correlated boundary conditions are solved analytically. Validation of the study is also done with published result. Distinct parameters (such as surface energy, slenderness ratio, as nonlocal material length scale and power-law exponent) influence is depicted graphically following the boundary conditions on non-dimensional FG nanobeams frequency.

Effects of Re-Peening on the Fatigue Damaged SM45C Steel (피로손상을 받은 SM45C강에 대한 재피닝의 효과)

  • Gang, Jin-Sik;Seo, Yu-Won;Kim, Tae-Hyeong;Jeong, Seong-Gyun;Sin, Yong-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1690-1697
    • /
    • 2002
  • The effects of re-peening on the fatigue damaged material are studied in this paper. The effects of re-peening process on surface hardness, surface roughness, surface compressive residual stress, and fatigue life are investigated. The results can be summarized in brief as follows: The depth of hardening layer was increased by re-peening process. There is no large variation of the surface roughness by re-peening process. The compressive residual stress of shot-peened specimen decreases under the fatigue loading and then increases again by re-peening process. Re-peening process increases the fatigue lifo of shot-peened and fatigue damaged specimen. The increase of fatigue lift under high stress level is much higher than under low stress level.

An analysis of an elastic solid incorporating a crack under the influences of surface effects in plane & anti-plane deformations

  • Kim, Chun Il
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.123-137
    • /
    • 2011
  • We review a series of crack problems arising in the general deformations of a linearly elastic solid (Mode-I, Mode-II and Mode-III crack) and, perhaps more significantly, when the contribution of surface effects are taken into account. The surface mechanics are incorporated using the continuum based surface/interface model of Gurtin and Murdoch. We show that the deformations of an elastic solid containing a single crack can be decoupled into in-plane (Mode-I and Mode-II crack) and anti-plane (Mode-III crack) parts, even when the surface mechanics is introduced. In particular, it is shown that, in contrast to classical fracture mechanics (where surface effects are neglected), the incorporation of surface elasticity leads to the more accurate description of a finite stress at the crack tip. In addition, the corresponding stress fields exhibit strong dependency on the size of crack.

ON CRACK INTERACTION EFFECTS OF IN-PLANE SURFACE CRACKS USING ELASTIC AND ELASTIC-PLASTIC FINITE ELEMENT ANALYSES

  • Kim, Jong-Min;Huh, Nam-Su
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.680-689
    • /
    • 2010
  • The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components.

The Shape Optimization of MIL-S-46119 Ring Obturator Under the High Pressure (고압을 받는 MIL-S-46119 원형 밀폐링의 형상 최적화)

  • Chae, Je-Wook;Lee, Young-Shin;Park, Tae-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The optimal design for the shape of MIL-S-46119 ring obturator under the high pressure using parameter stud:』 on the stress analysis considering effects of design variable is presented, and it is compared to experimental results. The trends of parametric study are in good agreement with the experimental results. The more thickness the higher stress. The more taper the higher stress. And maximum stress of circumferential surface is larger than maximum stress of forward surface. The design variable!; are such as thickness, taper, radius of shape of the obturator. In order to optimize the shape of obturation ring, the weight is maximized subject to maximum stress of the obturator within allowable stress. The design constraints are geometric elements of design variables.

Stability of perforated nanobeams incorporating surface energy effects

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.555-566
    • /
    • 2020
  • This paper aims to present an analytical methodology to investigate influences of nanoscale and surface energy on buckling stability behavior of perforated nanobeam structural element, for the first time. The surface energy effect is exploited to consider the free energy on the surface of nanobeam by using Gurtin-Murdoch surface elasticity theory. Thin and thick beams are considered by using both classical beam of Euler and first order shear deformation of Timoshenko theories, respectively. Equivalent geometrical constant of regularly squared perforated beam are presented in simplified form. Problem formulation of nanostructure beam including surface energies is derived in detail. Explicit analytical solution for nanoscale beams are developed for both beam theories to evaluate the surface stress effects and size-dependent nanoscale on the critical buckling loads. The closed form solution is confirmed and proven by comparing the obtained results with previous works. Parametric studies are achieved to demonstrate impacts of beam filling ratio, the number of hole rows, surface material characteristics, beam slenderness ratio, boundary conditions as well as loading conditions on the non-classical buckling of perforated nanobeams in incidence of surface effects. It is found that, the surface residual stress has more significant effect on the critical buckling loads with the corresponding effect of the surface elasticity. The proposed model can be used as benchmarks in designing, analysis and manufacturing of perforated nanobeams.

Approximate residual stress and plastic strain profiles for laser-peened alloy 600 surfaces

  • Eui-Kyun Park ;Hyun-Jae Lee ;Ju-Hee Kim ;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1250-1264
    • /
    • 2023
  • This paper presents approximate in-depth residual stress and plastic strain profiles for laser-peened alloy 600 surface via FE analysis. In approximations, effects of the initial welding residual stress and the number of shots are quantified. Based on FE analysis results, residual stress profiles are quantified by two variables; the maximum difference in stress before and after LSP, and the depth up to which the compressive residual stress exists. Plastic strain profiles are quantified by one variable, the maximum equivalent plastic strain at the surface. The proposed profiles are validated by comparing with published LSP experimental results for welded plates. Effects of the initial welding residual stress and the number of shots on these variables are discussed. The proposed profile can be directly applied to predict the mitigation effect of LSP on PWSCC and to efficiently perform structural integrity assessment of laser peened nuclear components.

A study of surface stress effects on equilibrium states of thin nanofilm (나노박막의 표면응력에 의한 평형상태에 대한 연구)

  • Kim, Won-Bae;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.34-37
    • /
    • 2009
  • 본 논문에서는 원자적 계산(atomistic calculation)을 이용한 나노박막의 평형상태(self-equilibrium state)에 대한 해석기법을 제시한다. 두께가 얇은 나노박막은 표면 응력(surface stress)에 의한 영향으로 원자간 거리가 벌크상태의 거리보다 작아진다. 두께가 얇은 나노박막에서의 원자 사이의 거리는 표면 응력과 탄성계수들의 표현식으로 계산이 가능하며, 본 논문에서는 {100}, {111}, {110} 표면을 가지는 나노박막의 평형상태의 해석을 위한 해석적 방법을 제시한다. 원자 사이의 거리를 계산하기 위해서는 보다 정확한 표면 응력의 계산방법이 필요하다. 본 연구에서는 나노박막의 평형상태에 대한 해석을 위해 surface relaxation model을 제시하고, 이 모델을 이용하여 표면응력(surface stress)과 표면강성계수(surface stiffness tensor)와 같은 surface parameter의 계산을 수행한다. 본 논문에서 제시된 surface relaxation model을 검증하기 위하여 분자동역학 전산모사(molecular dynamics simulation)의 수치 결과를 제시하고, 본 연구에서 계산한 equilibrium strain과 비교 검증한다.

  • PDF

The Effects of the Drive-in Process Parameters on the Residual Stress Profile of the $p^+$ Silicon Thin Film (후확산 공정 조건이 $p^+$ 실리콘 박막의 잔류 응력 분포에 미치는 영향)

  • Jeong, Ok-Chan;Park, Tae-Gyu;Yang, Sang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.665-671
    • /
    • 1999
  • The paper represents the effects of the drive-in process parameters on the residual stress profile of the $p^+$ silicon film. Since the residual stress profile is notuniform along the direction normal to the surface, the residual stress is assumed to be a polynomial function of the depth. All the coefficients of the polynomial can be determined by measuring of the thicknesses and the deflections of cantilevers and the deflection of a rotating beam with a surface profiler meter and a microscope. As the drive-in temperature or the drive-in time increases, the boron concentration decreases and the magnitude of the average residual tensile stress decreases. Then, near the surface of the $p^+$ film the residual tensile stress is transformed into the residual compressive stress and its magnitude increases.

  • PDF

Effects of Hyeolbuchukyeo-tang on Stress (혈부축어탕 스트레스에 미치는 영향)

  • Choi You-Kyung;Park Chong-hyeong;Jun Chan-yong;Kim Dong-woo;Hwang Gui-seo
    • The Journal of Korean Medicine
    • /
    • v.26 no.3 s.63
    • /
    • pp.162-175
    • /
    • 2005
  • Backgrounds : Two stress pathways, the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system, regulate immune system responses through release of corticosteroids, norepinephrine and epinephrine. respectively. These neuromediators act on immune cells via specific receptors on their surface to modulate the production of key regulatory cytokines. Objectives : To evaluate the preventive effects of oriental medicine Hyeolbuchukyeo-tang (HC) on stress. Methods : Mice were divided into three groups: nounal group, control group under immobilization stress and HC group which received Hyeolbuchukyeo-tang (HC) under immobilization stress. following sacrifice, their splenocytes were isolated and splenocyte surface markers were determined. The brains were removed and mRNA determined. In vivo, we separated RNA Iron cultured macrophages (RAW264.7). Results : In our study, immune functions were decreased in stress due mainly to changes of various neuromediators, cytokines and macrophage activities, and the treatment of HC increased those expressions. Conclusions : In summary, the present study documents the anti-stress effects of HC through stress-immune regulation.

  • PDF