DOI QR코드

DOI QR Code

Approximate residual stress and plastic strain profiles for laser-peened alloy 600 surfaces

  • Eui-Kyun Park (Mechanical Engineering, Korea University) ;
  • Hyun-Jae Lee (Mechanical and System Engineering, Korea Military Academy) ;
  • Ju-Hee Kim (Mechanical and System Engineering, Korea Military Academy) ;
  • Yun-Jae Kim (Mechanical Engineering, Korea University)
  • Received : 2022.08.01
  • Accepted : 2022.12.08
  • Published : 2023.04.25

Abstract

This paper presents approximate in-depth residual stress and plastic strain profiles for laser-peened alloy 600 surface via FE analysis. In approximations, effects of the initial welding residual stress and the number of shots are quantified. Based on FE analysis results, residual stress profiles are quantified by two variables; the maximum difference in stress before and after LSP, and the depth up to which the compressive residual stress exists. Plastic strain profiles are quantified by one variable, the maximum equivalent plastic strain at the surface. The proposed profiles are validated by comparing with published LSP experimental results for welded plates. Effects of the initial welding residual stress and the number of shots on these variables are discussed. The proposed profile can be directly applied to predict the mitigation effect of LSP on PWSCC and to efficiently perform structural integrity assessment of laser peened nuclear components.

Keywords

Acknowledgement

This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20206500000010).

References

  1. Electric Power Research Institute (EPRI), Report No. TR-103696, Material Reliability Program: PWSCC of Alloy 600 Materials in PWR Primary System Penetrations, 1994. 
  2. V. Cruz, Q. Chao, N. Birbilis, D. Fabijanic, P.D. Hodgson, S. Thomas, Electrochemical studies on the effect of residual stress on the corrosion of 316L manufactured by selective laser melting, Corrosion Sci. 164 (2020), 108314. 
  3. A.B. Rhouma, H. Sidhom, C. Braham, J. Ledion, M.E. Fitzpatrick, Effects of surface preparation on pitting resistance, residual stress, and stress corrosion cracking in austenitic stainless steels, J. Mater. Eng. Perform. 10 (5) (2001) 507-514.  https://doi.org/10.1361/105994901770344638
  4. S. Ghosh, V.P.S. Rana, V. Kain, V. Mittal, S.K. Baveja, Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel, Mater. Des. 32 (7) (2011) 3823-3831.  https://doi.org/10.1016/j.matdes.2011.03.012
  5. Electric Power Research Institute (EPRI), Report No. 1011806, Program on Technology Innovation: an Evaluation of Surface Stress Improvement Technologies for PWSCC Mitigation of Alloy 600 Nuclear Components: Materials Reliability Program, 2006 (MRP-162). 
  6. Electric Power Research Institute (EPRI), Report No. 3002008083, Materials Reliability Program: Technical Basis for Primary Water Stress Corrosion Cracking Mitigation by Surface Stress Improvement, 2012. MRP-267, Revision 1). 
  7. L. Ding, L. Ye, Laser Shock Peening Performance and Process Simulation, CRC Press, Boca Raton, FL, 2006. 
  8. A. Telang, A.S. Gill, S. Teysseyre, S.R. Mannava, D. Qian, V.K. Vasudevan, Effects of laser shock peening on SCC behavior of Alloy 600 in tetrathionate solution, Corrosion Sci. (2015). 
  9. H.L. Chen, J. Rankin, L. Hackel, G. Frederick, J. Hickling, S. Findlan, Laser Peening of Alloy 600 to Improve Intergranular Stress Corrosion Cracking Resistance in Power Plants, Sixth International EPRI Conference on Welding and Repair Technology for Power Plants, 2004. Sandestin, Florida, June 17, Paper No. UCRL-CONF-203826. 
  10. M. Yoda, N. Mukai, M. Ochiai, M. Tamura, S. Okada, K. Sato, M. Kimura, Y. Sano, N. Saito, S. Shima, T. Yamamoto, Laser-Based Maintenance and Repair Technologies for Reactor Components, 2004. ASME Paper No.ICONE-12-49238. 
  11. M. Yoda, B. Newton, Underwater Laser Peening, Eighth International EPRI Conference, 2008. Fort Myers, FL, June 18-20. 
  12. P. Ballard, Contraintes residuelles induites par impact rapide, Application au choc-laser, Ph.D. thesis, Ecole Polytechnique, Palaiseau, France, 1991. 
  13. W. Braisted, R. Brockman, Finite element simulation of laser shock peening, Int. J. Fatig. 21 (7) (1999) 719-724.  https://doi.org/10.1016/S0142-1123(99)00035-3
  14. K. Ding, L. Ye, Simulation of multiple laser shock peening of a 35CD4 steel alloy, J. Mater. Process. Technol. 178 (1-3) (2006) 162-169.  https://doi.org/10.1016/j.jmatprotec.2006.03.170
  15. P. Peyre, A. Sollier, I. Chaieb, L. Berthe, E. Bartnicki, C. Braham, R. Fabbro, FEM simulation of residual stresses induced by laser Peening, EPJ Appl. Phys. 23 (2) (2003) 83-88.  https://doi.org/10.1051/epjap:2003037
  16. J.L. Ocana, M. Morales, C. Molpeceres, J. Torres, Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments, Appl. Surf. Sci. 238 (1-4) (2004) 242-248.  https://doi.org/10.1016/j.apsusc.2004.05.232
  17. P. Peyre, I. Chaieb, C. Braham, FEM calculation of residual stresses induced by laser shock processing in stainless steels, Model. Simulat. Mater. Sci. Eng. 15 (3) (2007) 205-221.  https://doi.org/10.1088/0965-0393/15/3/002
  18. P. Peyre, L. Berthe, V. Vignal, I. Popa, T. Baudin, Analysis of laser shock waves and resulting surface deformations in an Al-Cu-Li aluminum alloy, J. Phys. D Appl. Phys. 45 (33) (2012), 335304. 
  19. G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech. 21 (1) (1985) 31-48.  https://doi.org/10.1016/0013-7944(85)90052-9
  20. J.S. Kim, H.S. Nam, Y.J. Kim, J.H. Kim, Numerical study of laser shock peening effects on alloy 600 nozzles with initial residual stresses, J. Press. Vessel Technol. Trans. ASME. 139 (4) (2017), 041406. 
  21. D. Busse, S. Ganguly, D. Furfari, P.E. Irving, Optimised laser peening strategies for damage tolerant aircraft structures, Int. J. Fatig. 141 (2020), 105890. 
  22. S. Keller, M. Horstmann, N. Kashaev, B. Klusemann, Experimentally validated multi-step simulation strategy to predict the fatigue crack propagation rate in residual stress fields after laser shock peening, Int. J. Fatig. 124 (2019) 265-276.  https://doi.org/10.1016/j.ijfatigue.2018.12.014
  23. Electric Power Research Institute (EPRI), Report No. 3002009241, Materials Reliability Program: Topical Report for Primary Water Stress Corrosion Cracking Mitigation by Surface Stress Improvement, 2016. MRP-335, Revision 3-A). 
  24. H.Y. Bae, Y.J. Kim, J.H. Kim, S.H. Lee, K.S. Lee, C.Y. Park, Three-dimensional finite element welding residual stress analysis of penetration nozzles: I - sensitivity of analysis variables, Int. J. Pres. Ves. Pip. 114-115 (2014) 1-15.  https://doi.org/10.1016/j.ijpvp.2013.11.006
  25. S.J. Kim, E.-K. Park, H.-Y. Bae, J.-H. Kim, N.-S. Huh, Y.-J. Kim, Finite element welding residual stress analysis of CRDM penetration nozzles, J. Pressure Vessel Technol. 144 (1) (2022), 011503. 
  26. ABAQUS, Abaqus User's Manual Version 2019, Dassault Systemes Simulia Corp. Provid. RI, USA, 2019. 
  27. L. Berthe, R. Fabbro, P. Peyre, L. Tollier, E. Bartnicki, Shock waves from a water-confined laser-generated plasma, J. Appl. Phys. 82 (6) (1997) 2826e2832. 
  28. A.W. Warren, Y.B. Guo, S.C. Chen, Massive parallel laser shock peening: simulation, analysis, and validation, Int. J. Fatig. 30 (1) (2008) 188-197.  https://doi.org/10.1016/j.ijfatigue.2007.01.033
  29. J.N. Johnson, R.W. Rohde, Dynamic deformation twinning in shock-loaded iron, J. Appl. Phys. 42 (11) (1971) 4171-4182.  https://doi.org/10.1063/1.1659750
  30. Special metals inconel alloy 600, Alloy Dig. (2008). 
  31. A.A. Bugayev, M.C. Gupta, R. Payne, Laser processing of inconel 600 and surface structure, Opt Laser. Eng. 44 (2) (2006) 102-111.  https://doi.org/10.1016/j.optlaseng.2005.04.014
  32. D. Rudland, Y. Chen, T. Zhang, G. Wilkowski, J. Broussard, G. White, Comparison of welding residual stress solutions for control rod drive mechanism nozzles, Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP 42843 (2007) 997-1011. 
  33. C.E. Anderson, T.J. Holmquist, T.R. Sharron, Quantification of the effect of using the Johnson-Cook damage model in numerical simulations of penetration and perforation, Proc. - 22nd Int. Symp. Ballist. (2005). 
  34. D.S. Lemons, C.M. Lund, Thermodynamics of high temperature, Mie-Gruneisen solids, Am. J. Phys. 67 (12) (1999) 1105. 
  35. Combustion Engineering Inc, Analytical Report for Korea Nuclear Unit No. 5 Reactor Vessel, 1981, pp. 1403-1488. Stamford, CT, Report No.CENC-1466.