• Title/Summary/Keyword: surface strain

Search Result 1,795, Processing Time 0.027 seconds

A numerical study on pull-out behaviour of cavern-type rock anchorages (수치해석에 의한 암반상의 지중정착식 앵커리지 인발 거동 연구)

  • Hong, Eun-Soo;Cho, Gye-Chun;Baak, Seng Hyoung;Park, Jae-Hyun;Chung, Moonkyung;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.521-531
    • /
    • 2014
  • This paper is a study for behaviour of cavern type anchorage tunnels for suspension bridges with cable tension. Anchorage behaviour, design method for anchorage, and failure surface angle, ${\delta}$ are analyzed by comparing numerical analysis results and ultimate pullout capacities($P_u$) using bilinear corelation equation. Results show that design depths for cavern type anchorage tunnels are easily checked with linear relationships for $P/{\gamma}/H$ vs. displacement and $P_u/{\gamma}/H$ vs. H/b. The analysis results of maximum shear strain distribution and plastic status show that failure shapes are closer to circular arc model than soil cone model which frequently used. To an easy calculation of the ultimate pullout capacity, we propose a simple bilinear failure model in this study. The calculated ultimate pullout capacities from the proposed bilinear corelation equation using two failure angles results are similar to the ultimate pullout capacities from numerical analysis.

Cultural Characteristics of a Biosurfactant-Producing Microorganism Pseudomonas aeruginosa F722 (Biosurfactant 생산균주 Pseudomonas aeruginosa F722의 배양특성)

  • ;;;Motoki Kubo
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.171-176
    • /
    • 2003
  • Productivity of biosurfactant (rhamnolipid) by Pseudomonas aeuginosa F722 was investigated in the several culture conditions and culture composition. Biosurfactant production by P. aeuginosa F722 was amounted to 0.78 g/l as the result of the nitrogen sources and carbon sources without investing of optimum conditions. As for that one was investigated, biosurfactant production by P. aeruginosa F722 was amounted to 1.66 g/l. Biosurfactant production increased twofold because the composition of a modified C-medium was investigated efficiently. $NE_4$Cl or $NaNO_2$ inorganic nitrogens and yeast extract or trypton organic nitrogens were effective, but others inorganic nitrogens and organic nitrogens tested were not efficient far biosurfactant production by P. aeruginosa F722. The optimum concentration of $NH_4$Cl; inorganic nitrogen and yeast extract; organic nitrogen were 0.05% and 0.1%, respectively. In various carbon sources, others with the exception of hydrophobic property substrate (n-alkane) and hydrophilic property substrate (glucose, glycol) were not found to be effective fur biosurfactant production, and 3.0% was better in yield than other concentration of glucose. This yielded C-to-N ratios between 17 and 20. In our experiment, the highest biosurfactant production by P. aeruginosa F722 were observed in 5 days cultivation, containing glucose 3.0%, $NH_4$Cl 0.05%, and yeast extract 0.1% and C-to-N ratio was 20. Optimal pH and temperature for biosurfactant production were 7.0 and $35^{\circ}C$, respectively. Under the optimal culture conditions with glucose, biosurfactant production was amounted to 1.66 g/l. Velocity of biosurfactant production and strain growth increased after nitrogen depletion. The average surface tension of 30 mN/m after the 3 days of incubation under optimal culture condition was measured by ring tensionmeter.

Bacterial Community Analysis and Antibacterial Activity Isolated from Umbraulva japonica (초록갈파래(Umbraulva japonica)에서 분리한 세균의 군집 구조 분석 및 항균 활성)

  • Kim, Ji-Hyun;Park, So-Hyun;Moon, Kyung-Mi;Kim, Dong-Hwi;Heo, Moon-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.127-134
    • /
    • 2018
  • In this study, 79 bacterial isolates were collected from the surface of marine algae Umbraulva japonica. As a result of analysis of 16s rRNA gene sequence, the 79 isolated bacteria were divided into 4 major groups: [Proteobacteria (74.69%), Actinobacteria (2.53%), Fimicutes (2.53%), and Bacteroidetes (20.25%)] - 7 classes (Actinobacteria, Flavobacteria, Sphingobacteria, Baciili, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria), 12 orders, 17 families and 31 genera. The newly isolated 3 strains could be novel species because of less than 97% similarity in 16s rRNA sequence. Therefore, it is considered that additional experiments should be conducted together with the standard strain. Analysis of 79 bacterial antibacterial activity against human and fish pathogens, such as Edwardsiella tarda, Vibrio harveyi, Streptococcus iniae, Steptococcus parauberis, Escherichia coli, Steptococcus mutans, Listeria monocytogenes and Vibrio vulnificus, was performed by using the supernatant liquid and pellet. As a result, pellet of UJT9, UJT20 and UJR17 showed antibacterial activity against V. vulnificus, UJR17 also showed antibacterial activity against S. parauberis. UJT7 and UJT20, UJR17 have been identified as Bacillus sp. and Pseudomonas sp. and it may be safely assented that it's beneficial to carry out additional experiments for various applications.

Reinforcement of Collapsed Railway Subgrade and Line Capacity Increase Using Short Reinforcement with Rigid Wall (짧은 보강재와 일체형 강성벽체를 활용한 철도 붕괴노반 보강 및 선로용량 증대 기술)

  • Kim, Dae-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.604-609
    • /
    • 2016
  • This study evaluated the long-term performance of RSR (Reinforced Subgrade for Railways) technology which increases the railway line capacity without the need for additional land. Its characteristics include the use of a short reinforcement with rigid wall, which make it possible to apply it in confined spaces. The 7m high and 40m long testbed employed to evaluate the long-term performance was designed and constructed near Jupo station on the Chang-hang line. This line, located close to a local bus route, had collapsed at the subgrade following heavy rainfall. The performance of the new type of subgrade was verified with long term measurements over a 2 year period including the surface and ground settlement, horizontal displacement of the wall, tensile strain of the reinforcement, and settlement of the rail top on the side track. Based on the results of the measurements made until now, we concluded that it had sufficient safety and serviceability for use as a railway subgrade. It is expected that RSR technology could be frequently used at sites which lack the necessary construction materials for an embankment and are located close to functional railway lines and boundaries, in order to settle civil complaints.

Creep Deformation Behaviors of Tin Pest Resistant Solder Alloys (Tin Pest 방지 솔더합금의 크리프 특성)

  • Kim S. B.;Yu Jin;Sohn Y. C.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.47-52
    • /
    • 2005
  • Worldwide movement for prohibition of Pb usage drives imminent implementation of Pb-free solders in microelectronic packaging industry. Reliability information of Pb-free solders has not been completely constructed yet. One of the potential reliability concerns of Pb-free solders is allotropic transformation of Sn known as tin pest. Volume increase during the formation of tin pest could deteriorate the reliability of solder joints. It was also reported that the addition of soluble elements (i.e. Pb, Bi, and Sb) into Sn can effectively suppress the tin pest. However, the mechanical properties of the tin pest resistant alloys have not been studied in detail. In this study, lap shear creep test was conducted with Sn and Sn-0.7Cu based solder alloys doped with minor amount of Bi or Sb. Shear strain rates of the alloy were generally higher than those of Sn-3.5Ag based alloys. Rupture strains and corresponding Monkman- Grant products were largest for Sn-0.5Bi alloy and smallest for Sn-0.7Cu-0.5Sb alloy. Rupture surface Sn-0.5Bi alloy showed highly elongated $\beta$-Sn globules necked to rupture by shear stresses, while elongation of $\beta$-Sn globules of Sn-0.7Cu-0.5Sb alloy was relatively smaller.

  • PDF

Improvement of Mechanical Properties of Mg alloys through Control of Grain Size and Texture (결정립크기와 집합조직제어를 통한 마그네슘 합금의 기계적 성질 개선)

  • Kim, W.J.;Lee, J.B.;Kim, W.Y.;Jeong, H.G.;Park, J.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.57-58
    • /
    • 2006
  • The effects of lowering ECAP temperature during ECAP process and Post-ECAP annealing on microstructure, texture and mechanical properties of the AZ31 alloys have been investigated in the present study. The as-extruded materials were ECAP processed to 2 passes at 553K prior to subsequent pressing up to 6 passes at 523K or 493K. When this method of lowering ECAP temperature during ECAP was used, the rods could be successfully deformed up to 6 passes without any surface cracking. Grain refinement during ECAP process at 553K might have helped the material to endure further straining at lower deformation temperatures probably by increasing the strain accommodation effect by grain boundary sliding, causing stress relaxation. Texture modification during ECAP has a great influence on the strength of Mg alloys because HCP metals have limited number of slip systems. As slip is most prone to take place on basal planes in Mg at room temperature, the rotation of high fraction of basal planes to the directions favorable for slip as in ECAP decreases the yield stress appreciably. The strength of AZ31 Mg alloys increases with decrease of grain size if the texture is constant though ECAP deformation history is different. A standard positive strength dependence on the grain size for Mg alloys with the similar texture (Fig. 1) supports that the softening of ECAPed Mg alloys (a negative slope) typically observed despite the significant grain refinement is due to the texture modification where the rotation of basal planes occurs towards the orientation for easier slip. It could be predicted that if the original fiber texture is restored after ECAP treatment yielding marked grain refinement, yield stress as high as 500 MPa will be obtained at the grain size of ${\sim}1{\mu}m$. Differential speed rolling (DSR) with a high speed ratio between the upper and lower rolls was applied to alter the microstructure and texture of the AZ31 sheets. Significant grain refinement took place during the rolling owing to introduction of large shear deformation. Grain size as small as $1.4{\mu}m$ could be obtained at 423K after DSR. There was a good correlation between the (0002) pole intensity and tensile elongation. This result indicates that tensile ductility improvement in the asymmetrically rolled AZ31 Mg alloys is closely related to the weakening of basal texture during DSR. Further basal texture weakening occurred during annealing after DSR. According to Hall-Petch relation shown in Fig. 1, the strength of the asymmetrically rolled AZ31 is lower than that of the symmetrically rolled one when compared at the same grain size. This result was attributed to weakening of fiber texture during DSR. The DSRed AZ31, however, shows higher strength than the ECAPed AZ31 where texture has been completely replaced by a new texture associated with high Schmid factors.

  • PDF

Environmental Factors Related to Mass Moralities of Young Red Seabream (Pagrus major) in the Artificial Seed Production (일본산 참돔, Pagrus major 종묘생산과정중 사육수 변화로 인한 대량폐사)

  • 최상덕;정관식;김호진;김성수
    • Journal of Aquaculture
    • /
    • v.11 no.2
    • /
    • pp.203-212
    • /
    • 1998
  • As seed production program is growing prosperously in various fishes in southern Korea, disease problems in larval and juvenile stages have emerged as a new research object. The following results were obtained from investigation about environmental factors related to mass mortalities of young Kinki red seabream, Pagrus major in process of artificial seedling production. Total length of red seabream larvae hatched was 2.93mm, and became 18.83~20.12mm at day 40. The first noticeable mortality of red seabream larvae (7.98~9.37mm) occurred in 25~30 day-old fish with the survival rates of 59.8~60.3%. Thereafter the mortality of larvae decreased, survival rate was 20.5~25.45% in day 40. After 20~30 days, the quality of pond water was bellow II class. During the experimental period COD, $PO_4$-P, $NO_2$-N, $NO_3$-N and $NH_$-N increased up to 3, 7, 34, 6 and 8 times, respectively, compared to initial ones. The number of viable bacteria in pond water and seabream larvae were $6.3{\times}10^6$~$2.3{\times}10^7$ cfu/ml, 4.3~$7.4{\times}10^6$ cfu/g in day 25, respectively. Among the isolated bacteria from the diseased red seabream in day 25, Vibrio spp. was considered to be the causative organism. External symptoms of this disease were floated, spined near the surface and inflated abdomen. When the isolated strain of the Vibrio was bathed to seabream larvae, $LD_50$ of seabream larvae was over $10^6$ cfu/ml of Vibrio spp.

  • PDF

Flexural and Impact Resisting Performance of HPFRCCs Using Hybrid PVA Fibers (하이브리드 PVA 섬유를 이용한 HPFRCCs의 휨 및 충격 성능 평가)

  • Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.705-712
    • /
    • 2009
  • HPFRCCs (high-performance fiber reinforced cementitious composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of PVA (polyvinyl alcohol) fiber, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCCs. In this study, flexural tests were carried out to evaluate the flexural behavior of HPFRCCs and to optimize mix proportions. Two sets of hybrid fiber reinforced high performance specimens with total fiber volume fraction of 2 % were tested: the first set prepared by addition of short and long PVA fibers at different combination of fiber volume fractions, and the second set by addition of steel. In addition, in order to assess the performances of the HPFRCCs against to high strain rates, drop weight tests were conducted. Lastly, the sprayed FRP was applied on the bottom surface of specimens to compare their impact responses with non-reinforcing specimens. The experimental results showed that the specimen prepared with 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed the other specimens under flexure, and impact loading.

A Study on the Thermal Crack Control of Foundation for Large Turbine (대형 터빈 기초 구조물의 온도균열 제어에 관한 연구)

  • Ha, Ju-Hyung;Cho, Yun-Gu;Lee, Kewn-Chu;Lim, Chang-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.287-297
    • /
    • 2014
  • Heat of hydration of mass concrete is one of the most important factors that significantly affect structural quality and construction period. Therefore, appropriate methods to control heat of hydration are essential technologies for mass concrete construction. In this study, probability of thermal cracking was checked by thermal analysis prior to the construction of a turbine foundation in a domestic power plant. Subsequently, changes of concrete mix proportion and an effective curing method were proposed to control heat of hydration of mass concrete structures. Concrete manufactured by slag cement was proposed instead of concrete produced by ordinary Portland cement, and an automated curing method was proposed to improve the curing method using typical moist curing with blanket. The automated curing method maintains the temperature difference between center and surface of concrete below a setting value by temperature monitoring. Concrete with slag cement was used for actual construction. One of two identical turbine foundations was cured by an insulated curing method, and the other was cured by the automated curing method to compare the curing methods. And then, the effects of control of heat of hydration were evaluated based on temperature/strain monitoring and crack investigations.

Delia platura(Meigen): Bionomics and It`s Resistance to Host Plants (씨고자리파리의 생태 및 기주식물에 대한 저항성)

  • 김태흥;조형찬
    • Korean journal of applied entomology
    • /
    • v.28 no.1
    • /
    • pp.16-22
    • /
    • 1989
  • A series of experiments was undertaken to learn bionomics and gowt plant resistance of the seedcorn maggot, Delia platura(Meigen), under controlled(24$\pm$$2^{\circ}C$, RH70$\pm$5%, and LD 16:8h)and field conditions. The preoviposition period for the flies was 9 days. The females survived for an average of 50(3-77) and the males for 24(1-59) days. A greater proportion of flies emerged between 6:00 A.M. and 9:00 A.M., soon after the sun rise. After the over-wintering, adults started to emerge in mid-April from pupae located near the soil surface, and peaked in late April by others located deeper. The sex ratio was about 1:1 with total samples of 1,609 females and 1,641 males. Weight of pupae reared from onion was heavier than those from other diets in the laboratory, however its size was samller than that of natural flies. Considerably more eggs were laid near pea seeds than other hosts tested. Among beans, Bapmitkong with blue seed-coat and a cowpea bean strain were preferred for oviposition. 'Namcheon` cultivar was found to be susceptible to attack by the larvae in the laboratory.

  • PDF