• Title/Summary/Keyword: surface state

Search Result 3,696, Processing Time 0.047 seconds

Compositional Study of Surface, Film, and Interface of Photoresist-Free Patternable SnO2 Thin Film on Si Substrate Prepared by Photochemical Metal-Organic Deposition

  • Choi, Yong-June;Kang, Kyung-Mun;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.13-17
    • /
    • 2014
  • The direct-patternable $SnO_2$ thin film was successfully fabricated by photochemical metal-organic deposition. The composition and chemical bonding state of $SnO_2$ thin film were analyzed by using X-ray photoelectron spectroscopy (XPS) from the surface to the interface with Si substrate. XPS depth profiling analysis allowed the determination of the atomic composition in $SnO_2$ film as a function of depth through the evolution of four elements of C 1s, Si 2p, Sn 3d, and O 1s core level peaks. At the top surface, nearly stoichiometric $SnO_2$ composition (O/Sn ratio is 1.92.) was observed due to surface oxidation but deficiency of oxygen was increased to the interface of patterned $SnO_2/Si$ substrate where the O/Sn ratio was about 1.73~1.75 at the films. This O deficient state of the film may act as an n-type semiconductor and allow $SnO_2$ to be applied as a transparent electrode in optoelectronic applications.

A Study on DC Motor Control Using Sliding Mode Control (슬라이딩 모드를 이용한 DC 모터 제어에 관한 연구)

  • Yoon, Seong-Sik;Kim, Min-Chan;Park, Seung-Kyu;Ahn, Ho-Gyun;Kim, Sung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1679-1680
    • /
    • 2008
  • DC motor has been widely used in industrial applications, because the performance is excellent on the speed and position system. However, when a system has parameter uncertainty, it is very difficult to guarantee its performance. Sliding mode control is robust for parameter uncertainty. However conventional sliding mode control can not have the properties of PID controller because its sliding surface has lower order dynamics than the original system. In this paper the sliding surface design method is proposed by using virtual state for DC motor speed control. Its design is based on the augmented system whose dynamics have one higher order than that of the original system. As a result, in spite of the parameter uncertainty, the proposed sliding surface can have the same dynamic of nominal system controlled by PID controller. And the reaching phase is removed by setting an initial state which makes the initial sliding surface equal to zero.

  • PDF

Application of Variational Method to the Elastic Foundation (변분법에 의한 탄성지반 해석)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4642-4647
    • /
    • 2011
  • Solution for elastic foundation of plane strain state was derived by the application of variational method. Functions of the transverse distribution of the displacements for the analysis were chosen as linear functions. Loading conditions considered for the analysis were concentrated load and distributed load. Under the loading condition of the concentrated load, surface displacement was decreased drastically as the distance from the point of the loading increased. Under the loading condition of the distributed load, surface displacements were more uniformly distributed beneath the loading area when the ratio of the half of the loading width to the depth(B/H) of the compressible layer was greater. The surface displacement was more quickly converged from the edge of the loading area as the ratio(B/H) increased.

Reliability Analysis of Pile Type Quaywall Using Response Surface Method (응답면 기법을 이용한 잔교식 안벽의 신뢰성 해석)

  • Lee, Sang-Geun;Kim, Dong-Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.407-413
    • /
    • 2011
  • Reliability analysis of pile type quaywalls were done by using response surface method. Pier structures have implicit form of limit state function since they are flexible in motion, which is different from gravity type quaywalls. To solve a reliability analysis problem with implicit limit state function, response surface method was applied. Reliability indices of structure under seismic load were found for pier structures Then, they were compared with those found by simulation method. In numerical analysis, both the inclined type and vertical type were analyzed.

Studies on Seepage Flow Analysis through Sea Dike (防潮堤의 浸透流 解析에 관한 硏究)

  • Kim, Gwan-Jin;Jo, Byeong-Jin;Yun, Chung-Seop
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.87-99
    • /
    • 1992
  • A mathematical model, UNSATR which predicts the seepage flow through the body of dike especially under the tidal fluctuation has been developed. This model has been revised from UNSAT2 model which was developed on the basis of the saturated-unsaturated theory by Neuman. UNSATR has been verified and applied to the hydraulic model in order to estimated the seepage quantity, the formation of free water surface etc. The results lead to the following conclusions : 1. Seepage rates between the mathematical model and hydraulic model experiment are very similar to each other both in constant and transient water level conditions. 2. The lapsed time to be steady state of the free water surface becomes late as the tidal levels are relatively low mainly due to the seepage flow from the unsaturated zone of the body of dike. 3. Under the transient state of water levels, owing to the flow from the unsaturated domain, streamlines crossing to the free water surface are found and time lag during a falling tide may allow the free water surface inside the body of dike to stand at a high level than the outside water level. 4. The utility and validity of UNSATR model are convinced when the analyses on seepage problems through the porous embankment of the soil structures on the conditions of the steady and unsteady states are carried out.

  • PDF

Enhanced Electrochromic Performance by Uniform Surface Morphology of Tungsten Oxide Films (텅스텐산화물 막의 균일한 표면 형상에 의한 향상된 전기변색 성능)

  • Kim, Kue-Ho;Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.411-416
    • /
    • 2018
  • Tungsten oxide($WO_3$) films with uniform surface morphology are fabricated using a spin-coating method for applications of electrochromic(EC) devices. To improve the EC performances of the $WO_3$ films, we control the heating rate of the annealing process to 10, 5, and $1^{\circ}C/min$. Compared to the other samples, the $WO_3$ films fabricated at a heating rate of $5^{\circ}C/min$ shows superior EC performances for transmittance modulation(49.5 %), response speeds(8.3 s in a colored state and 11.2 s in a bleached state), and coloration efficiency($37.3cm^2/C$). This performance improvement is mainly related to formation of a uniform surface morphology with increased particle size without any cracks by an optimized annealing heating rate, which improves the electrical conductivity and electrochemical activity of the $WO_3$ films. Thus, the $WO_3$ films with a uniform surface morphology prepared by the optimized annealing heating rate can be used as a potential candidate for performance improvement of the EC devices.

Single Bubble Dynamic Behavior in AL2O3/H2O Nanofluid on Downward-Facing Heating Surface

  • Wang, Yun;Wu, Junmei
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.915-924
    • /
    • 2016
  • After a severe accident to the nuclear reactor, the in-vessel retention strategy is a key way to prevent the leakage of radioactive material. Nanofluid is a steady suspension used to improve heat-transfer characteristics of working fluids, formed by adding solid particles with diameters below 100nm to the base fluids, and its thermal physical properties and heat-transfer characteristics are much different from the conventional working fluids. Thus, nanofluids with appropriate nanoparticle type and volume concentration can enhance the heat-transfer process. In this study, the moving particle semi-implicit method-meshless advection using flow-directional local grid method is used to simulate the bubble growth, departure, and sliding on the downward-facing heating surface in pure water and nanofluid (1.0 vol.% $Al_2O_3/H_2O$) flow boiling processes; additionally, the bubble critical departure angle and sliding characteristics and their influence are also investigated. The results indicate that the bubble in nanofluid departs from the heating surface more easily and the critical departure inclined angle of nanofluid is greater than that of pure water. In addition, the influence of nanofluid on bubble sliding is not significant compared with pure water.

Friction Angle on the Surface of Vertical Ground Anchor in Sand (모래지반내의 연직 지반앵커 표면의 마찰각)

  • 임종철
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.99-110
    • /
    • 1995
  • In this study, friction angles on the surface of vertical rigid ground anchor in normally consolidated dry sand were measured by model pullout tests in laboratory. Friction angles were obtained from the normal and shear stresses measured along depth of the anchor stir face by attaching several 2-dimensional load cells. Model tests were conducted under the plane strain state and axial symmetric state. From the results of tests, it was concluded that the maximum friction angle on the anchor surface coincides nearly with the maximum angle of stress obliquity on the plane of zero-extension direction obtained by plane strain compression test. This result was made with regard to the strength anisotropy and stress dependency of sand. It showed that when angle of shear resistance of the sand is applied to the friction angle of the anchor surface, the design capacity could be less than the applied force, thus making the anchor unsafe.

  • PDF

Phase Transition of Biology Thin Film and Molecule Arrangement Properties (생체박막의 상전이와 분자배열특성)

  • Kim, Byung-Geun;Chon, Dong-Kyu;Kim, Young-Keun;Gu, Hal-Bon;Lee, Woo-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.103-106
    • /
    • 2003
  • It is well known that the state of existence of molecules on the surface of water changes during compression of the molecules. Electric methods, such as measurement of the surface potential or displacement current are also useful for investigating dynamic changes of molecular state on the water surface during compression. In this paper, We studied on the Bio thin film by Langmuir-Biodgett(LB) method. The Experiment method used displacement current, $\pi-A$ isotherm and BAM (Brewster Angle Microscopy). using the BAM, we can to the molecular orientation of monolayer on the water surface and directly see the morphology of the films on water subphase as well as that of the films.

  • PDF