DOI QR코드

DOI QR Code

Enhanced Electrochromic Performance by Uniform Surface Morphology of Tungsten Oxide Films

텅스텐산화물 막의 균일한 표면 형상에 의한 향상된 전기변색 성능

  • Kim, Kue-Ho (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Koo, Bon-Ryul (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 김규호 (서울과학기술대학교 신소재공학과) ;
  • 구본율 (서울과학기술대학교 의공학-바이오소재 융합 협동과정 신소재공학프로그램) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2018.06.05
  • Accepted : 2018.06.21
  • Published : 2018.07.27

Abstract

Tungsten oxide($WO_3$) films with uniform surface morphology are fabricated using a spin-coating method for applications of electrochromic(EC) devices. To improve the EC performances of the $WO_3$ films, we control the heating rate of the annealing process to 10, 5, and $1^{\circ}C/min$. Compared to the other samples, the $WO_3$ films fabricated at a heating rate of $5^{\circ}C/min$ shows superior EC performances for transmittance modulation(49.5 %), response speeds(8.3 s in a colored state and 11.2 s in a bleached state), and coloration efficiency($37.3cm^2/C$). This performance improvement is mainly related to formation of a uniform surface morphology with increased particle size without any cracks by an optimized annealing heating rate, which improves the electrical conductivity and electrochemical activity of the $WO_3$ films. Thus, the $WO_3$ films with a uniform surface morphology prepared by the optimized annealing heating rate can be used as a potential candidate for performance improvement of the EC devices.

Keywords

References

  1. M. Layani, P. Darmawan, W. L. Foo, L. Liu, A. Kamyshny, D. Mandler, S. Magdassi and P. S. Lee, Nanoscale, 6, 4572 (2014). https://doi.org/10.1039/c3nr06890k
  2. H. Li, G. Shi, H. Wang, Q. Zhang and Y. Li, J. Mater. Chem. A, 2, 11305 (2014). https://doi.org/10.1039/C4TA01803F
  3. G. J. Stec, A. Lauchner, Y. Cui, P. Nordlander and N. J. Halas, ACS Nano, 11, 3254 (2017). https://doi.org/10.1021/acsnano.7b00364
  4. J. R. Platt, J. Chem. Phys., 34, 862 (1961). https://doi.org/10.1063/1.1731686
  5. G. Cai, J. Wang and P. S. Lee, Acc. Chem. Res., 49, 1469 (2016). https://doi.org/10.1021/acs.accounts.6b00183
  6. E. Khoo, P. S. Lee and J. Ma, J. Eur. Ceram. Soc., 30, 1139 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.05.014
  7. M. Barawi, L. D. Trizio, R. Giannuzzi, G. Veramonti, L. Manna and M. Manca, ACS Nano, 11, 3576 (2017). https://doi.org/10.1021/acsnano.6b06664
  8. Y. Li, D. Chen and R. A. Caruso, J. Mater. Chem. C, 4, 10500 (2016).
  9. P. Porkodi, V. Yegnaraman and D. Jeyakumar, Mater. Res. Bull., 41, 1476 (2006). https://doi.org/10.1016/j.materresbull.2006.01.030
  10. M. Caiado, A. Machado, R. N. Santos, I. Matos, I. M. Fonseca, A. M. Ramos, J. Vital, A. A. Valente and J. E. Castanheiro, Appl. Catal., A, 451, 36 (2013). https://doi.org/10.1016/j.apcata.2012.11.007
  11. T. Brezesinski, D. F. Rohlfing, S. Sallard, M. Antonietti and B. M. Smarsly, Small, 2, 1203 (2006). https://doi.org/10.1002/smll.200600176
  12. R. Mukherjee and P. P. Sahay, J. Alloys Compd., 660, 336 (2016). https://doi.org/10.1016/j.jallcom.2015.11.138
  13. S. R. Bathe and P. S. Patil, Sol. Energy Mater. Sol. Cells, 91, 1097 (2007). https://doi.org/10.1016/j.solmat.2007.03.005
  14. L. A. Stanciu, V. Y. Kodash and J. R. Groza, Metall. Mater. Trans. A, 32A, 2633 (2001).
  15. Y. M. Hunge, M. A. Mahadik, S. S. Kumbhar, V. S. Mohite, K. Y. Rajpure, N. G. Deshpande, A. V. Moholkar and C. H. Bhosale, Ceram. Int., 42, 789 (2016). https://doi.org/10.1016/j.ceramint.2015.08.178
  16. B.-R. Koo, K.-H. Kim and H.-J. Ahn, Appl. Surf. Sci., 453, 238 (2018). https://doi.org/10.1016/j.apsusc.2018.05.094
  17. B.-R. Koo and H.-J. Ahn, Nanoscale, 9, 17788 (2017). https://doi.org/10.1039/C7NR06796H
  18. S. Burkhardt, M. T. Elm, B. Lani-Wayda, P. J. Klar, Adv. Mater. Interfaces, 5, 1701587 (2018). https://doi.org/10.1002/admi.201701587
  19. H. Song, Y. Li, Z. Lou, M. Xiao, L. Hu, Z. Ye and L. Zhu, Appl. Catal., B, 166-167, 112 (2015). https://doi.org/10.1016/j.apcatb.2014.11.020
  20. R. S. Vemuri, K. K. Bharathi, S. K. Gullapalli and C. V. Ramana, ACS Appl. Mater. Interfaces, 2, 2623 (2010). https://doi.org/10.1021/am1004514
  21. M. L. Hitchman, Thin Solid Films, 61, 341 (1979). https://doi.org/10.1016/0040-6090(79)90479-6
  22. K. Wang, P. Zeng, J. Zhai and Q. Liu, Electrochem. Commun., 26, 5 (2013). https://doi.org/10.1016/j.elecom.2012.09.037
  23. J. Zhu, S. Wei, M. Alexander, T. D. Dang, T. C. Ho and Z. Guo, Adv. Funct. Mater., 20, 3076 (2010). https://doi.org/10.1002/adfm.201000261
  24. C.-K. Wang, C.-K. Lin, C.-L. Wu, S. Brahma, S.-C. Wang and J.-L. Huang, Ceram. Int., 39, 4293 (2013). https://doi.org/10.1016/j.ceramint.2012.11.010