• Title/Summary/Keyword: surface settlement data

Search Result 65, Processing Time 0.024 seconds

Analysis of Peripheral Surface Settlement during Subway Excavation (지하철 굴착공사에 따른 인접지반의 침하 해석)

  • 문준석;권강오;김홍석;장연수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.621-628
    • /
    • 2000
  • In this study, the influence of groundwater variation and surface settlement adjacent to the excavation site of subway station on $\bigcirc$$\bigcirc$ Gas station and the $\bigcirc$$\bigcirc$ building is analized. Measurement data of surface settlement, horizontal deformation and groundwater level are used to verify the results of Caspe analytical method and FLAC numerical analysis. Variation of groundwater level adjacent to the excavation site is modelled by the 3-D groundwater flow program, MODFLOW. The results of both the analytical method and the numerical method were quite close to the measurement data of surface settlement.

  • PDF

Model for predicting ground surface settlement by field measuring and numerical analysis in shield TBM tunnel (현장계측과 수치해석에 의한 쉴드TBM 터널의 지표침하 예측모델)

  • Kim, Seung-Chul;Ahn, Sung-Youll;Lee, Song;Noh, Tae-Kil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.271-287
    • /
    • 2013
  • In this study, more convenient model(S-model) for predicting ground surface settlement is developed through comparing field monitoring data of the domestic subway applied shield TBM method with conventional equation & numerical analysis. Sample stations are chosen from whole of excavation section and lateral & vertical ground surface settlement characteristic with excavation are analysed. Based on analysis result, through the comparison with actual monitoring data, the model that is possible to compute maximum surface settlement and settlement influence area is suggested with assumption that lateral surface settlement forms are composed relaxed zone and elastic zone. In addition, vertical ground surface settlement patterns with excavation are similar to cubic-function and S-model with assumption that coefficients are function of tunnel diameter and depth is suggested. Consequently, the ground surface settlement patterns are significantly similar to actual monitoring data and numerical method result. Thus, as a result, when tunnels are excavated using sheild TBM through rather soft weathered soil & rock layer, prediction of ground surface settlement with excavation using convenient S-model is practicable.

Evaluation of Foundation Settlement of Gyungbu High Speed Concrete Track Under Construction (건설 중인 경부고속철도 콘크리트궤도 기초침하 평가)

  • Kim, Dae-Sang;Yoo, Chung-Hyun;Kim, Hwan-Ki
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.365-370
    • /
    • 2007
  • Foundation settlements(settlements at the embankment surface and ground) has been evaluating to satisfy the strict allowable residual settlement level from the start of the construction of Gyungbu high speed railway. This is because both embankment and ground settlement could be important to minimize the residual settlement after the construction of concrete track. Ground settlement is caused by the increase of effective stress resulting from embankment. The causes of embankment settlement could be come from different sources, for example, the increase of effective stress, rainfall, creep behaviors. Based on the field measured data, this paper analysed the settlement of ground and embankment settlement. The biggest settlement at the embankment surface was 9.7mm during 246days at the STA 000k922.5. The calculated settlement of embankment itself was 8.6mm at the same places. These results conclude that the compressive settlement of embankment could not negligible.

  • PDF

Instrumentation Management of Differential Settlement of the Deep Soft Ground with Dredged Clay Reclaimed in the Upper (대심도 준설 매립지반에서의 층별침하 계측관리에 관한 사례 연구)

  • Tae-Hyung Kim;Seung-Chan Kang;Ji-Gun Chang;Soung-Hun Heo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.87-96
    • /
    • 2023
  • There are a lot of difference between the surface settlement and the differential settlement measured at the Busan New Port, where the dredged and reclaimed clay layer exists and below the clay is originally thickly distributed. To find the cause and solution of this, the actual conditions of each differential settlement used for the soft ground improvement, characteristics, installation method, measurement frequency, measurement data management, and data analysis of each type were considered. In the deep soft ground improvement work where large deformation occurs, the bending deformation of the screw-type differential settlement gauge is less than that of other types of measuring instruments, so there is less risk of loss, and the reliability of data is relatively high as the instruments are installed by drilling for each stratum. Since the greater the amount of high-precision settlement measurement data, the higher the settlement analysis precision. It is necessary to manage with higher criteria than the measurement frequency suggested in the standard specification. For the data management of the differential settlement gauge, it is desirable to create graphs of the settlement and embankment height of the relevant section over time, such as surface, differential, and settlement of pore water pressure gauge for each point. In the case of multi-layered ground with different compression characteristics, it is more appropriate to perform settlement analysis by calculating the consolidation characteristics of each stratum using a differential settlement data.

Development of Database System for Management of Roadbed Settlement in High Speed Railway (고속철도 노반 침하관리를 위한 DB 개발)

  • Choi, Chan-Yong;Kim, Dae-Sang;Lee, Jin-Wook;Shin, Min-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.500-504
    • /
    • 2007
  • Database are developed to control measured settlement data under construction in Gyungbu High Speed Railway from Daegu to Busan. This means that data having different type at different site could be managed in a unified way. The database includes algorithm to evaluate embankment settlement with settlement data at the surface of embankment and ground settlement data. And also, it has a function to analyse the causes of large settlement over allowable level and high settlement speed based on the log data, embankment specification, physical characteristics of embankment materials.

  • PDF

A Prediction Method for Ground Surface Settlement During Shield Tunneling in Cohesive Soils (점성토 지반에서의 실드 터널 시공에 따른 지표침하 예측 기법)

  • Yoo, Chung-Sik;Lee, Ho
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.107-122
    • /
    • 1997
  • This paper presents a ground surface settlement prediction method for shield tunneling in cohesive soils. In order to develop the method, a parametric study on shield tunneling was performed by using a threetimensional elasto-plastic finite element analysis, which can simulate the construction procedure. By using the results of the finite element analysis, the ground movement mechanism was investigated and a base which relates the ground surface settlement and iuluencing factors was formed. The data base was then used to formulate semi -empirical equations for both surface settlement ratio above tunnel face and imflection point by means of a regression analysis. Furthermore, a prediction method for transverse and longitudinal surface settlement profiles was suggested by using the leveloped equations in conjunction with the normal probability curve. Effectiveness of the developed method was illustrated by comparing settlement profiles obtained by using the developed method with the results of finite element analysis and measured data. Based on the comparison, it was concluded that the developed method can be effectively rosed for practical applications at least within the conditions investigated.

  • PDF

Numerical evaluation of surface settlement induced by ground loss from the face and annular gap of EPB shield tunneling

  • An, Jun-Beom;Kang, Seok-Jun;Kim, Jin;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.291-300
    • /
    • 2022
  • Tunnel boring machines combined with the earth pressure balanced shield method (EPB shield TBMs) have been adopted in urban areas as they allow excavation of tunnels with limited ground deformation through continuous and repetitive excavation and support. Nevertheless, the expansion of TBM construction requires much more minor and exquisitely controlled surface settlement to prevent economic loss. Several parametric studies controlling the tunnel's geometry, ground properties, and TBM operational factors assuming ordinary conditions for EPB shield TBM excavation have been conducted, but the impact of excessive excavation on the induced settlement has not been adequately studied. This study conducted a numerical evaluation of surface settlement induced by the ground loss from face imbalance, excessive excavation, and tail void grouting. The numerical model was constructed using FLAC3D and validated by comparing its result with the field data from literature. Then, parametric studies were conducted by controlling the ground stiffness, face pressure, tail void grouting pressure, and additional volume of muck discharge. As a result, the contribution of these operational factors to the surface settlement appeared differently depending on the ground stiffness. Except for the ground stiffness as the dominant factor, the order of variation of surface settlement was investigated, and the volume of additional muck discharge was found to be the largest, followed by the face pressure and tail void grouting pressure. The results from this study are expected to contribute to the development of settlement prediction models and understanding the surface settlement behavior induced by TBM excavation.

Prediction of Major Parameters of Surface Settlements Due to Tunnelling (터널굴착으로 인한 지반침하의 주요 영향 인자 예측)

  • Kim, Chang-Yong;Park, Chi-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.113-125
    • /
    • 2002
  • Although there are several empirical and semi-empirical formulae available for predicting ground surface settlement, most of them do not simultaneously take into consideration all the relevant factors, resulting in inaccurate predictions. In this study, an artificial neural network (ANN) is incorporated with 113 of monitored field results to predict surface settlement for a tunnel site with prescribed conditions. To achieve this, a format for a database of monitored field data is first proposed and then used for sorting out a variety of monitored data sets available in Korea Institute of Construction Technology. An optimal neural network model is suggested through preliminary parametric studies and introduces a concept of RSE (Yang and Zhang, 1997) in sensitivity analysis for various major factors affecting the surface settlement in tunnelling. It is seen in some examples that the RSE rationally enables to recognize the most significant factors of all the contributing factors. Two verification examples are undertaken with the trained ANN using the database created in this study. It is shown from the examples that the ANN has adequately recognized the characteristics of the monitored data sets retaining a generality fur further prediction.

The Optimal Locational Environment of the Bronze Age Settlement in Cheonan Baekseok-dong through the Ridge Environment's Perspective - Focusing on the Locational Characteristics of Residential Areas Based on Geographical Analysis and GIS Analysis - (능선환경으로 본 천안 백석동 청동기시대 취락의 최적 입지환경 - 지형분석과 GIS분석을 이용한 주거지 입지 특성에 주목하여 -)

  • Park, Ji Hoon;Lee, Ae Jin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.4
    • /
    • pp.103-116
    • /
    • 2018
  • The purposes of this research are as follows: First, to reconstruct the optimal locational environment of the Bronze Age settlement in Cheonan Baekseok-dong (hereinafter referred to as the study settlement). Second, to identify the priority ranking of the topographical factors that influenced the Bronze Age people when selecting their the settlement location. For these reasons, the topographical factors of the 200 Bronze Age dwellings (hereinafter referred to as dwellings) confirmed in the survey area were analyzed through the ridge's environmental perspective. The results are asfollows: First, the optimal ridge environment of the Bronze Age settlement is largely a sub-ridge in N-S direction (for example, NNW-SSE, N-S, NNESSW), especially at the top (Crest slope, Crest flat) of the south-facing aspect of the ridge. Second, when the Bronze Age dwellers selected a residential location, they carefully considered topographical factors in the following order: (1) the slope direction of the ridge surface, (2) the micro-landform of the ridge, (3) the ridge scale, (4) the ridge direction, and (5) the surface relief. The results of this study could be used as basic data in related fields such as archaeology, quaternary research, and traditional architecture and so on.

A Study on Key Factors of Ground Settlement Due to Shield TBM Excavation using Numerical Analysis and Field Measurement Comparison (수치해석과 현장 계측값 비교를 통한 Shield TBM 지표침하 영향요소 검토)

  • Jun, Gychan;Kim, Donghyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.63-72
    • /
    • 2017
  • This study estimates the degree of influence of factors influencing ground surface settlement during tunnel excavation using Shield tunneling trough 3D FE-analyses. Numerical analysis was carried out by considering face pressure, skinplate pressure, excavation length, soil model, element size and soil material properties. Also, Actually constructed shield TBM comparative analysis was conducted by compared with Volume loss model, Pressure model and field measurement data. Skinplate pressure and soil model were the most influential factors, and the analysis results were similar to field measurements when the appropriate skinplate pressure was applied according to the passing stratum.