• 제목/요약/키워드: surface pressure measurement

검색결과 482건 처리시간 0.024초

극저온(20K) 수소동위원소 흡착 등온선의 온도 변화에 대한 자동 저온 부피 교정 (Automated Cold Volume Calibration of Temperature Variation in Cryogenic Hydrogen Isotope Sorption Isotherm)

  • 박재우;오현철
    • 한국재료학회지
    • /
    • 제29권5호
    • /
    • pp.336-341
    • /
    • 2019
  • The gas adsorption isotherm requires accurate measurement for the analysis of porous materials and is used as an index of surface area, pore distribution, and adsorption amount of gas. Basically, adsorption isotherms of porous materials are measured conventionally at 77K and 87K using liquid nitrogen and liquid argon. The cold volume calibration in this conventional method is done simply by splitting a sample cell into two zones (cold and warm volumes) by controlling the level sensor in a Dewar filled with liquid nitrogen or argon. As a result, BET measurement for textural properties is mainly limited to liquefied gases (i.e. $N_2$ or Ar) at atmospheric pressure. In order to independently investigate other gases (e.g. hydrogen isotopes) at cryogenic temperature, a novel temperature control system in the sample cell is required, and consequently cold volume calibration at various temperatures becomes more important. In this study, a cryocooler system is installed in a commercially available BET device to control the sample cell temperature, and the automated cold volume calibration method of temperature variation is introduced. This developed calibration method presents a reliable and reproducible method of cryogenic measurement for hydrogen isotope separation in porous materials, and also provides large flexibility for evaluating various other gases at various temperature.

TBM 디스크커터의 마모량 실시간 계측을 위한 연구현황 (Introduction to Research Trend of Real-Time Measurement for Wear of TBM Disc Cutter)

  • 박민성;주민석;조민성;이준;김정주;정호영
    • 터널과지하공간
    • /
    • 제32권6호
    • /
    • pp.478-490
    • /
    • 2022
  • TBM의 주요 절삭도구인 디스크커터는 과다하게 마모되거나 손상된 경우 적절한 시기에 교체되어야 한다. 일반적으로 커터의 교체여부를 판단하기 위해서 작업자가 커터헤드 챔버의 내부로 접근하여 디스크 커터의 상태와 마모량을 계측하고 있다. 하지만 커터헤드(cutterhead) 챔버(chamber) 내부는 작업자에게 열악한 조건일 경우가 많아 작업자의 안전과 관련한 이슈가 있으며, 인력에 의해서 계측이 이루어짐에 따라 계측치의 오차도 발생하는 것으로 보고되고 있다. 이러한 한계점을 극복하고자 현재 해외에서는 디스크커터의 마모정도를 계측센서를 통해 굴착 중에 실시간으로 측정하기 위한 기술의 개발이 활발하게 이루어지고 있으며, 본 연구에서는 현재까지 해외의 문헌을 통해 보고되고 있는 TBM 디스크커터의 마모량 계측에 관한 연구현황에 대하여 소개하고자 하였다. 여러 형식의 센서가 디스크커터의 마모계측을 위해 활용되고 있으며, 향후 국내에서도 유사한 기술의 개발이 이루어지는 경우에 유용한 참고자료가 될 수 있을 것으로 판단된다.

Preliminary numerical analysis of controllable prestressed wale system for deep excavation

  • Lee, Chang Il;Kim, Eun Kyum;Park, Jong Sik;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • 제15권5호
    • /
    • pp.1061-1070
    • /
    • 2018
  • The main purpose of retaining wall methods for deep excavation is to keep the construction site safe from the earth pressure acting on the backfill during the construction period. Currently used retaining wall methods include the common strut method, anchor method, slurry wall method, and raker method. However, these methods have drawbacks such as reduced workspace and intrusion into private property, and thus, efforts are being made to improve them. The most advanced retaining wall method is the prestressed wale system, so far, in which a load corresponding to the earth pressure is applied to the wale by using the tension of a prestressed (PS) strand wire. This system affords advantages such as providing sufficient workspace by lengthening the strut interval and minimizing intrusion into private properties adjacent to the site. However, this system cannot control the tension of the PS strand wire, and thus, it cannot actively cope with changes in the earth pressure due to excavation. This study conducts a preliminary numerical analysis of the field applicability of the controllable prestressed wale system (CPWS) which can adjust the tension of the PS strand wire. For the analysis, back analysis was conducted through two-dimensional (2D) and three-dimensional (3D) numerical analyses based on the field measurement data of the typical strut method, and then, the field applicability of CPWS was examined by comparing the lateral deflection of the wall and adjacent ground surface settlements under the same conditions. In addition, the displacement and settlement of the wall were predicted through numerical analysis while the prestress force of CPWS was varied, and the structural stability was analysed through load tests on model specimens.

Effects of Inspiratory Muscle Exercise Using Biofeedback on Inspiratory Muscle Activity and Pulmonary Function in Patients with Stroke

  • Yang, Dae-Jung;Park, Seung-Kyu;Kang, Jeong-Il;Kim, Je-Ho;Kim, Sung-Yong
    • The Journal of Korean Physical Therapy
    • /
    • 제27권5호
    • /
    • pp.287-291
    • /
    • 2015
  • Purpose: This study was conducted to determine the influence of inspiratory muscle exercise using visual biofeedback and inspiratory muscle exercise with diaphragm breathing retraining in stroke patients in regard to inspiratory muscle activity and respiratory function and to provide fundamental information on intervention for improvement of pulmonary function in stroke patients. Methods: The current study measured and analyzed inspiratory muscle activity and pulmonary function of 15 randomly selected subjects in a Biofeedback inspiratory muscle exercise (BIE) group that uses visual feedback and 15 subjects in the Diaphragm breathing exercise (DBE) group that uses breathing retraining before and after intervention. Intervention was performed for 30 minutes, 5 times a week, for 8 weeks. Subjects were measured for muscle activity of upper trapezius muscle and lattisimus dorsi muscle using a surface electromyography system and maximum inspiratory pressure was measured using a respiratory measurement device. For homogeneity test of subjects, independent t-test was performed and ANCOVA was performed for comparison of inspiratory muscle activity and pulmonary function between groups. Results: In the study results, the BIE group showed more significant muscle activity than the DBE group in upper trapezius muscle and lattisimus dorsi muscle (p<0.001). In addition, the BIE group showed more pressure than the DBE group in maximum inspiratory pressure (p<0.001). Conclusion: Based on the current study, performing biofeedback respiration exercise simultaneously with breathing retraining in stroke patients can provide more efficient respiratory physical therapy. In addition, it is considered that consistent study on the effectiveness is necessary to further improve clinical availability.

Hetero-epitaxial ZnO 버퍼층이 As-doped ZnO 박막의 증착조건에 미치는 영향 (Effect of the hetero-epitaxial ZnO buffer layer for the formation of As-doped ZnO thin films)

  • 이홍찬;최원국;심광보;오영제
    • 센서학회지
    • /
    • 제15권3호
    • /
    • pp.216-221
    • /
    • 2006
  • ZnO thin films prepared by PLD method exhibit an excellent optical property, but may have some problems such as incomplete surface roughness and crystallinity. In this study, undoped ZnO buffer layers were deposited on (0001) sapphire substrates by ultra high vacuum pulse laser deposition (UHV-PLD) and molecular beam epitaxy (MBE) methods, respectively. After post annealing of ZnO buffer layer, undoped ZnO thin films were deposited under different oxygen pressure ($35{\sim}350$ mtorr) conditions. The Arsenic-doped (1, 3 wt%) ZnO thin layers were deposited on the buffer layer of undoped ZnO by UHV-PLD method. The optical property of the ZnO thin films was analyzed by photoluminescence (PL) measurement. The ${\theta}-2{\theta}$ XRD analysis exhibited a strong (002)-peak, which indicates c-axis preferred orientation. Field emission-scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO thin films were varied by oxygen partial pressure, Arsenic doping concentration, and deposition method of the undoped ZnO buffer layer. The denser and smoother films were obtained when employing MBE-buffer layer under lower oxygen partial pressure. It was also found that higher Arsenic concentration gave the enhanced growing of columnar structure of the ZnO thin films.

$CeO_2$박막의 결정성 및 전기적 특성에 미치는 sputtering시 산소분압비의 영향 (Effects of oxygen partial pressure during sputtering on texture and electrical properties of $CeO_2$ thin films)

    • 한국진공학회지
    • /
    • 제10권1호
    • /
    • pp.51-56
    • /
    • 2001
  • MFISFET(Metal-ferroelectric-insulator-semiconductor-field effect transistor)에의 적용을 위한 절연체로서 CeO$_2$ 박막을 r.f. magnetron sputtering법에 의해 제조하였다. 스퍼터링시 증착개스는 Ar과 $O_2$를 사용하였으며 산소분압비에 따른 $CeO_2$박막의 결정성 및 전기적 특성에 미치는 영향을 평가하였다. p형-Si(100)기판 위에 $600^{\circ}C$에서 증착된 $CeO_2$ 박막들은(200)방향으로 우선방향성을 가지고 성장하였으며 Ar만으로 증착된 박막의 우선방향성은 증가하였으나 상대적으로 많은 하전입자와 표면 거칠기로 인해 C-V특성에서 큰 이력특성을 보였고 산소분압비가 증가함에 따라 양호한 특성을 보였다. 이것은 이동가능한 이온전하의 감소에 기인한다고 할 수 있다. Ce:O의 비는 모든 박막에서 1:2.22~2.42를 보여 산소과잉의 조성을 나타냈으며 산소분압비에 따라 제조된 박막들의 누설전류값은 100 kV/cm의 전계에서 $10^{-7}$~$10^{-8}$A의 차수를 보였다.

  • PDF

Electrical Properties and Microstructures in Ti Films Deposited by TFT dc Sputtering

  • Han, Chang-Suk;Jeon, Seung-Jin
    • 한국재료학회지
    • /
    • 제26권4호
    • /
    • pp.207-211
    • /
    • 2016
  • Ti films were deposited on glass substrates under various preparation conditions in a chamber of two-facing-target type dc sputtering; after deposition, the electric resistivity values were measured using a conventional four-probe method. Crystallographic orientations and microstructures, including the texture and columnar structure, were also investigated for the Ti films. The morphological features, including the columnar structures and surface roughness, are well explained on the basis of Thornton's zone model. The electric resistivity and the thermal coefficient of the resistivity vary with the sputtering gas pressure. The minimum value of resistivity was around 0.4 Pa for both the $0.5{\mu}m$ and $3.0{\mu}m$ thick films; the apparent tendencies are almost the same for the two films, with a small difference in resistivity because of the different film thicknesses. The films deposited at high gas pressures show higher resistivities. The maximum of TCR is also around 0.4 Pa, which is the same as that obtained from the relationship between the resistivity and the gas pressure. The lattice spacing also decreases with increasing sputtering gas pressure for both the $0.5{\mu}m$ and $3.0{\mu}m$ thick films. Because they are strongly related to the sputtering gas pressures for Ti films that have a crystallographic anisotropy that is different from cubic symmetry, these changes are well explained on the basis of the film microstructures. It is shown that resistivity measurement can serve as a promising monitor for microstructures in sputtered Ti films.

압력감응 페인트를 이용한 평판에서의 막냉각 계수 측정 (Measurement of the Film Cooling Effectiveness on a Flat Plate using Pressure Sensitive Paint)

  • 박승덕;이기선;조영신;김학봉;곽재수;김재환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.329-334
    • /
    • 2007
  • 고온 환경에서 작동하는 가스터빈 블레이드의 열부하 감소를 위해 다양한 냉각법이 적용되고 있다. 블레이드 외부에서는 작은 홀을 통해 저온의 냉각유체를 분사시키는 막냉각법이 사용되는데, 블레이드 내부의 정확한 온도 예측을 위해서는 작동 조건과 위치에 따른 막냉각 효율을 정확히 산출하여야 한다. 본 연구에서는 압력에 따라 반사되는 빛의 강도를 달리하는 압력감응페인트를 이용하여 평판에서의 막냉각 효율을 측정하였다. 그 결과, 압력감응페인트를 이용한 막냉각 계수 측정법은 상세한 막냉각 계수의 분포를 측정 가능케 하였다. 0.5, 1, 2의 세 가지 분사비가 실험에 적용되었고, 분사비가 커질수록 막냉각 홀 근처의 막냉각 계수는 감소하였지만 하류의 막냉각 계수는 증가하였다.

  • PDF

해안매립지반의 도시철도 시공에 따른 구조물 침하 특성 분석 (Characteristics of Structure Settlement due to Urban Railway Construction on Reclaimed Land)

  • 신은철;임용관;박정준
    • 한국지반신소재학회논문집
    • /
    • 제11권1호
    • /
    • pp.23-33
    • /
    • 2012
  • 본 연구의 대상 현장은 굴착심도가 약 20m 내외로 사업 전구간을 개착공법으로 계획하였고, 흙막이 가시설공법은 굴착심도까지 쉬트파일과 버팀보 공법을 적용하여 도시철도 하부기초에서 계측된 침하 자료를 사용, 시공 중 대상 현장에서 발생된 지반공학적 문제점을 분석하였다. 쉬트파일 인발에 따른 영향을 알아보기 위하여 제 1구간과 제 2구간에 간극수압계와 지하수위계를 설치하여 연속적인 쉬트파일 인발에 따른 간극수압 및 지하수위의 변화와 하부지반 침하를 평가하였다. 또한, 구조물 하부기초 계측자료와 기존 문헌의 지반정수를 적용하여 계측시점에 해당하는 침하량을 수치해석 프로그램인 CAIN RDA 프로그램을 통하여 비교 분석하였으며 추가하중을 고려하여 장기침하를 산정하였다. 해석 결과, 6개 구간에서 5.94~12.77cm의 침하가 발생되어 제 2구간에서의 침하량이 12.77cm로 허용 침하량 10.0cm보다 크게 나타났다.

Growth of zinc oxide thin films by oxygen plasma-assisted pulsed laser deposition

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.208-208
    • /
    • 2010
  • Zinc oxide (ZnO) is a functional material with interesting optical and electrical properties, a wide band gap (more than 3.3 eV), a high transmittance in the visible light region, piezoelectric properties, and a high n-type conductivity. This material has been investigated for use in many applications, such as transparent electrodes, blue light-emitting diodes, and ultra-violet detector. ZnO films grown under low oxygen pressure by thin film deposition methods show low resistivity and large free electron concentration. Therefore, reducing the background carrier concentration in ZnO films is one of the major challenges ahead of realizing high-performance ZnO-based optoelectronic devices. In this study, we deposited ZnO thin films on sapphire substrates by pulsed laser deposition (PLD) with employing an oxygen plasma source to decrease the background free-electron concentration and enhance the crystalline quality. Then, the substrate temperature was varied between 200 'C to 900 'C The vacuum chamber was initially evacuated to a pressure of $10^{-6}$ Torr, and then a pure $O_2$ gas was introduced into the chamber and the pressure during deposition was maintained at $10^{-2}$ Torr. Crystallinity and orientation of ZnO films were investigated by X-ray diffraction (XRD). The film surface was analyzed with atomic force microscope (AFM). And electrical properties were measured at room temperature by Hall measurement.

  • PDF