• 제목/요약/키워드: surface pressure

검색결과 6,616건 처리시간 0.04초

Using response surface methodology and Box-Behnken design in the study of affecting factors on the dairy wastewater treatment by MEUF

  • Khosroyar, Susan;Arastehnodeh, Ali
    • Membrane and Water Treatment
    • /
    • 제9권5호
    • /
    • pp.335-342
    • /
    • 2018
  • Micelle-Enhanced Ultrafiltration (MEUF) is a membrane separation processes that improving ultrafiltration process with the formation of micelles of the surface active agents. Surface active agents are widely used to improve membrane processes due to the ability to trap organic compounds and metals in the treatment of industrial waste water. In this study, surface active agents are used to improve micelle-enhanced ultrafiltration (MEUF) to reduce chemical oxygen demand (COD), total dissolved solid (TDS), turbidity and clogging the membrane in dairy wastewater treatment. Three important operational factors (anionic surface active agent concentration, pressure and pH) and these interactions were investigated by using response surface methodology (RSM) and Box-Behnken design. Results show that due to the concentration polarization layer and increase the number of Micelles; the anionic surface active agent concentration has a negative effect on the flux and has a positive effect on the elimination of contamination indices. pH, and the pressure have the greatest effect on flux. On the other hand, it could be stated that these percentages of separation are in the percentages range of Nano-filtration (NF). While MEUF process has higher flux than NF process. The results have been achieved at lower pressure while NF process needs high pressure, thus making MEUF is the replacement for the NF process.

다양한 산소분압에 따른 용융 Ag-Sn 및 Ag-Cu 합금의 표면장력 (Surface Tension of Molten Ag-Sn and Au-Cu Alloys at Different Oxygen Partial Pressures)

  • 민순기;이준호
    • 한국재료학회지
    • /
    • 제19권1호
    • /
    • pp.13-17
    • /
    • 2009
  • A semi-empirical method to estimate the surface tension of molten alloys at different oxygen partial pressures is suggested in this study. The surface tension of molten Ag-Sn and Ag-Cu alloys were calculated using the Butler equation with the surface tension value of pure substance at a given oxygen partial pressure. The oxygen partial pressure ranges were $2.86{\times}10^{-12}$$1.24{\times}10^{-9}$ Pa for the Ag-Sn system and $2.27{\times}10^{-11}$$5.68{\times}10^{-4}$ Pa for the Ag-Cu system. In this calculation, the interactions of the adsorbed oxygen with other metallic constituents were ignored. The calculated results of the Ag-Sn alloys were in reasonable accordance with the experimental data within a difference of 8%. For the Ag-Cu alloy system at a higher oxygen partial pressure, the surface tension initially decreased but showed a minimum at $X_{Ag}$ = 0.05 to increase as the silver content increased. This behavior appears to be related to the oxygen adsorption and the corresponding surface segregation of the constituent with a lower surface tension. Nevertheless, the calculated results of the Ag-Cu alloys with the present model were in good agreement with the experimental data within a difference of 10%.

표면 로울링시 가압력이 표면 조도에 미치는 영향 (An effect of load on surface roughness in surface rolling)

  • 강명순;김희남
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.935-944
    • /
    • 1987
  • 본 연구에서는 금속 표면의 정밀가공법을 연구대상으로 하여 구상흑연주철시 편을 미량의 테이퍼로 연삭가공하고 NACHI 6000ZZ 볼 베어링을 로울러로 사용하여 로 울러 다듬질을 행함으로써 로울러 지름 변화에 따른 가압력이 표면조도에 미치는 영향 을 구명하는데 목적을 두었으며 아울러 로울링(rolling)회수에 따른 펴면조도, 경도 및 직경의 변화량을 실험적으로 구명하였다.

The impact of EPB pressure on surface settlement and face displacement in intersection of triple tunnels at Mashhad metro

  • Eskandari, Fatemeh;Goharrizi, Kamran Goshtasbi;Hooti, Amir
    • Geomechanics and Engineering
    • /
    • 제15권2호
    • /
    • pp.769-774
    • /
    • 2018
  • The growth of cities requires the construction of new tunnels close to the existing ones. Prediction and control of ground movement around the tunnel are important especially in urban area. The ground respond due to EPB (Earth Pressure Balance) pressure are investigated using the finite element method by ABAQUS in intersection of the triplet tunnels (Line 2, 3 and 4) of Mashhad Urban Railway in Iran. Special attention is paid to the effect of EPB pressure on the tunnel face displacement. The results of the analysis show that in EPB tunneling, surface settlement and face displacement is related to EPB pressure. Moreover, it is found that tunnel construction sequence is a great effect in face displacement value. For this study, this value in Line 4 where is excavated after line 3, is smaller than that line. In addition, the trend of the displacement curves are changed with the depth for all lines where is located in above and below, close to and above the centerline tunnel face for Line 2, 3 and 4, respectively. It is concluded that: (i) the surface settlement decreases with increasing EPB pressure on the tunnel face; (ii) at a constant EPB pressure, the tunnel face displacement values increase with depth. In addition, this is depended on the tunneling sequence; (iii) the trend of the displacement curves change with the depth.

자유수면에 낙하하는 물체의 충격압력 변화에 관한 연구 (A Study on the Impact Pressure of a Falling Body upon a Free Surface Water)

  • 이종붕
    • 한국산업융합학회 논문집
    • /
    • 제4권3호
    • /
    • pp.295-304
    • /
    • 2001
  • The hydrodynamic impact problem was studied from 1929 to recent. Especially, Impact pressure is important for the design of the ships and offshore structure and spacecrafts, and under weapons. A ship traveling at high speed or in heavy sea has its bow and bottom damaged by high pressure caused by impact with and detachment from the water surface. Considerable impact may also occur when large waves hit the cross member or deck plate of an offshore structure within the splash zone. Many engineering cases require consideration of impact pressure, the movement of objects and change of the flow field. This study was obtained the pressure distribution of a falling body that is deadrise angle $0^{\circ}$ and deadrise angle $5^{\circ}$ upon a water surface by the experiment with the impact machine. The theoretical equation was obtained the air region and the interface and the water region which devide 3 parties between the body and the water surface for an investigation of the complete phenomena. Pressure distributions and histories compare favorably with available experimental data. The numerical results are similar to the experimental results for the impact force type with Fo(1+$cos{\pi}t/tc$).

  • PDF

Optimal pressure and temperature for Cu-Cu direct bonding in three-dimensional packaging of stacked integrated circuits

  • Seunghyun Yum;June Won Hyun
    • 한국표면공학회지
    • /
    • 제56권3호
    • /
    • pp.180-184
    • /
    • 2023
  • Scholars have proposed wafer-level bonding and three-dimensional (3D) stacked integrated circuit (IC) and have investigated Cu-Cu bonding to overcome the limitation of Moore's law. However, information about quantitative Cu-Cu direct-bonding conditions, such as temperature, pressure, and interfacial adhesion energy, is scant. This study determines the optimal temperature and pressure for Cu-Cu bonding by varying the bonding temperature to 100, 150, 200, 250, and 350 ℃ and pressure to 2,303 and 3,087 N/cm2. Various conditions and methods for surface treatment were performed to prevent oxidation of the surface of the sample and remove organic compounds in Cu direct bonding as variables of temperature and pressure. EDX experiments were conducted to confirm chemical information on the bonding characteristics between the substrate and Cu to confirm the bonding mechanism between the substrate and Cu. In addition, after the combination with the change of temperature and pressure variables, UTM measurement was performed to investigate the bond force between the substrate and Cu, and it was confirmed that the bond force increased proportionally as the temperature and pressure increased.

Characteristics of wind loading on internal surface and its effect on wind-induced responses of a super-large natural-draught cooling tower

  • Zou, Yun-feng;Fu, Zheng-yi;He, Xu-hui;Jing, Hai-quan;Li, Ling-yao;Niu, Hua-wei;Chen, Zheng-qing
    • Wind and Structures
    • /
    • 제29권4호
    • /
    • pp.235-246
    • /
    • 2019
  • Wind loading is one of important loadings that should be considered in the design of large hyperbolic natural-draught cooling towers. Both external and internal surfaces of cooling tower are under the action of wind loading for cooling circulating water. In the previous studies, the wind loads on the external surface attracted concernedly attention, while the study on the internal surface was relatively ware. In the present study, the wind pressure on the internal surface of a 220 m high cooling tower is measured through wind tunnel testing, and the effect of ventilation rate of the packing layer on internal pressure is a major concern. The characteristics of internal wind pressure distribution and its effect on wind-induced responses calculated by finite element method are investigated. The results indicate that the wind loading on internal surface of the cooling tower behaves remarkable three-dimensional effect, and the pressure coefficient varies along both of height and circumferential directions. The non-uniformity is particularly strong during the construction stage. Analysis results of the effect of internal pressure on wind-induced responses show that the size and distribution characteristics of internal pressure will have some influence on wind-induced response, however, the outer pressure plays a dominant role in the wind-induced response of cooling tower, and the contribution of internal pressure to the response is small.

연삭가공된 강재의 표면 Rolling시 가압력이 표면 조도에 미치는 영향 (An Effect of Load on Surface Roughness on Surface Rolling of Ground Mild Steel)

  • 김희남
    • 한국안전학회지
    • /
    • 제2권1호
    • /
    • pp.31-41
    • /
    • 1987
  • The surface rolling method which is one of the plastic deformation processes increases the surface roughness with reduction of diameter and hardness. In this study, three NACHI 6000 ZZ bearing were used for surface rolling tool on a mild steel. The following results have been obtained with the mild steel. 1) The load is major factor in getting fine surface roughness of roller fininshing after grinding. The optimal surface roughness of SS40 steel can be obtained at the contact pressure of $210kgf/cm^2$. But, Better surface roughness can not be expected, Due to flaking phenomena at more than 300 kgf/cm of contact pressure. 2) At the contact pressure range of $200kgf/cm^2{\sim}210kgf/cm^2$ for optimal surface roughness, The surface hardness increased to Hv 200~Hv 240 from Hv 125 before surface rolling. 3) Within the diameter variation of $13{\mu}m$ the surface roughness and the surface hardness were increased, but out of variation of $14{\mu}m$. The surface roughness become worse and the surface hardness was increased.

  • PDF

화학증착 탄화규소에 의한 표면 개질 (Surface Modification Using CVD-SiC)

  • 김한수;최두진;김동주
    • 한국세라믹학회지
    • /
    • 제33권7호
    • /
    • pp.761-770
    • /
    • 1996
  • Silicon carbide (SiC) films were deposited by low pressure chemical vapor deposition (LPCVD) using MTS (CH3SICl3) in a hydrogen atmosphere onto graphite substrates. Depletion effects of reactants which usually occur in the hot wall horizaontal reactor were increased with deposition temperature and pressure. Below 50 torr of total pressure (111) plane was preferenctially grown irrespectrive of deposition temperature and deposition site. Over 50 torr of total pressure however (220) plane was preferentially deposited under 130$0^{\circ}C$ and at inlet site. The surface morphologies of SiC films were uniform at all deposition sites under low pressure but greatly changed with pressure. It shows that a facet structure which was formed above 125$0^{\circ}C$ played an important role in the changed of preferred orientation and surface roughness.

  • PDF

SPUTTERING PRESSURE EFFECTS ON MAGNETIC ANISOTROPY IN Co/Pt MULTILAYERS

  • Kim, Jin-Hong;Shin, Sung-Chul
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.461-464
    • /
    • 1995
  • We have investigated the effects of sputtering Ar gas pressure on magnetic anisotropy of Co/Pt multilayers, where sputtering Ar gas pressure was varied from 2 to 20 mTorr. The surface and volume anisotropies were found to be strongly dependent on sputtering Ar gas pressure. In particular, the surface anisotropy exhibited more than fourfold enhancement as Ar pressure was decreased from 20 to 5 mTorr. We have found that the surface anisotropy was closely correlated with the low-angle x-ray diffraction intensity. We believe that these results are mainly ascribed to the variation of microstructure in the Co/Pt multilayer thin films with sputtering Ar gas pressure.

  • PDF