• Title/Summary/Keyword: surface phase transition

Search Result 250, Processing Time 0.023 seconds

Photoluminescence and Fabrication of Zirconia Nanofibers from Electrospinning an Alkoxide Sol Templated on a Polyvinyl Butyral (폴리비닐 부티랄에 붙힌 지르코늄 알콕시드 졸을 사용한 전기방사에서 지르코니아 나노섬유 제조와 광발광)

  • Ko, Tae-Gyung;Han, Kyu-Suk;Rim, Tae-Kyun;Oh, Seoung-Gyu;Han, Sang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.343-352
    • /
    • 2010
  • A zirconia gel/polymer hybrid nanofiber was produced in a nonwoven fabric mode by electrospinning a sol derived from hydrolysis of zirconium butoxide with a polyvinyl butyral. Results indicated that the hydroxyl groups on the vinyl alcohol units in the backbone of the polymer were involved in the hydrolysis as well as grafting the hydrolyzed zirconium butoxide. In addition, use of acetic acid as a catalyst resulted in further hydrolysis and condensation in the sol, which led to the growth of -Zr-O-Zr- networks among the polymer chains. These networks gradually transformed into a crystalline zirconia structure upon heating. The as-spun fiber was smooth but partially wrinkled on the surface. The average fiber diameter was $690{\pm}110\;nm$. The fiber exhibited a strong but broad blue photoluminescence with its maximum intensity at a wavelength of ~410 nm at room temperature. When the fiber was heat-treated at $400^{\circ}C$, the fiber diameter shrunk to $250{\pm}60\;nm$. Nanocrystals which belonged to a tetragonal zirconia phase and were ~5 nm in size appeared. A strong white photoluminescence was observed in this fiber. This suggests that oxygen or carbon defects associated with the formation of the nanocrystals play a role in generating the photoluminescence. Further heating to $800^{\circ}C$ resulted in a monoclinic phase beginning to form In the heat-treated fibers, coloring occurred but varied depending on the heating temperature. Crystallization, coloring, and phase transition to the monoclinic structure influenced the photoluminescence. At $600^{\circ}C$, the fiber appeared to be fully crystallized to a tetragonal zirconia phase.

Phase Transitions In Nonstoichiometric Titanium Oxide Thin Films (비정량적 산화티타늄 박막의 상변태 특성)

  • Hong, Seong-Min;Lee, Pil-Hong;Go, Gyeong-Hyeon;An, Jae-Hwan;Lee, Sun-Il
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.224-228
    • /
    • 1998
  • Phase transition kinetics of nonstoichiometric amorphous titanium oxide thin films deposited by reactive sputtering was investigated after cooling down with various rate followed by l0min.-3hrs. annealing at $500^{\circ}C$~$600^{\circ}C$ After short duration and fast cooling. Magneli was the only crystalline phase because the oxidation rates of $TiO_{2-x}$, could be relatively slower than that of crystallization. When the films were cooled slowly between $500^{\circ}C$~$300{\circ}C$, Magneli was transformed into an anatase and stabilized, but directly into a rutile under fast cooling. Because the rutile also prevailed after cooling from $600^{\circ}C$, it was concluded that the rutile phase could be formed directly from Magneli as well as converted from the anatase. Changes in volume and surface morphology were observed related to crystallization and oxidation processduring heat treatment.

  • PDF

3D Numerical Simulation of Ice Accretion on a Rotating Surface

  • Mu, Zuodong;Lin, Guiping;Bai, Lizhan;Shen, Xiaobin;Bu, Xueqin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.352-364
    • /
    • 2017
  • A novel 3D mathematical model for water film runback and icing on a rotating surface is established in this work, where both inertial forces caused by the rotation and shear forces due to the air flow are taken into account. The mathematical model of the water film runback and energy conservation of phase transition process is established, with a cyclical average method applied to simulate the unsteady parameters variation at angles of attack. Ice accretion on a conical spinner surface is simulated and the results are compared with the experimental data to validate the presented model. Then Ice accretion on a cowling surface is numerically investigated. Results show that a higher temperature would correspond to a larger runback ice area and thinner ice layer for glaze ice. Rotation would enhance the icing process, while it would not significantly affect the droplet collection efficiency for an axi-symmetric surface. In the case at angle of attack, the effect of rotation on ice shape is appreciable, ice would present a symmetric shape, while in a stationary case the shape is asymmetric.

A Study on the Microstructure of Organic Ultra Thin Films and Phase Transition of Langmuir Films in BAM (BAM을 이용한 L막의 상전이 현상과 유기초박막의 미세구조에 관한 연구)

  • Kim, Byung-Geun;Chon, Dong-Kue;Kim, Young-Keun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.938-941
    • /
    • 2003
  • It is well known that the state of existence of molecules on the surface of water changes during compression of the molecules. Electric methods, such as measurement of the surface potential or displacement current are also useful for investigating dynamic changes of molecular state on the water surface during compression and Transformation of molecular film occurs only usually in air-water interface, 2 dimensions domain's growth and crash are achieved. Organic thin film that consist of growth of domain can understand correct special quality of accumulation film supplying information about fine structure and properties of matter of device observing information and so on that is surface forward player and optic enemy using AFM one of SPM application by nano electronics. In this paper Langmuir (L) that is one of basis technology to manufacture of organic matter device using biology material PBDG that is kind of polypeptide that have biology adaptedness. The Experiment method used ${\pi}-A$ isotherm and BAM(Brewster Angle Microscopy), using the BAM, we can to the molecular orientation of monolayer on the water surface and directly see the morphology of the films on water subphase as well as that of the films.

  • PDF

Dry Friction Characteristics of Bulk Amorphous Thermal Spray Coating and Amorphous Metallic Matrix Composites (벌크 비정질 용사코팅과 비정질 기지 복합재료의 건조 마찰특성)

  • Jang, Beomtaek;Yi, Seonghoon
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.108-115
    • /
    • 2014
  • The friction behaviors of bulk amorphous thermal spray coating (BAC) and second phase-reinforced composite coatings using a high velocity oxy-fuel spraying process were investigated using a ball-on-disk test rig that slides against a ceramic ball in an atmospheric environment. The surface temperatures were measured using an infrared thermometer installed 50 mm from the contact surface. The crystallinities of the coating layers were determined using X-ray diffraction. The morphologies of the coating layers and worn surfaces were observed using a scanning electron microscope and energy-dispersive spectroscopy. The results show that the friction behavior of the monolithic amorphous coating was sensitive to the testing conditions. Under lower than normal loads, a low and stable friction coefficient of about 0.1 was observed, whereas under a higher relative load, a high and unstable friction coefficient of greater than 0.3 was obtained with an instant temperature increase. For the composite coatings, a sudden increase in friction coefficient did not occur, i.e., the transition region did not exist and during the friction test, a gradual increase occurred only after a significant delay. The BAC morphology observations indicate that viscous plastic flow was generated with low loads, but severe surface damage (i.e., tearing) occurred at high loads. For composite coatings, a relatively smooth surface was observed on the worn surface for all applied loads.

Characteristics and Phase Transition of Clay Minerals as the Results of Bentonite Weathering (벤토나이트의 풍화에 따른 점토광물의 상전이 및 광물특성)

  • 노진환;이석훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.147-159
    • /
    • 2002
  • Weathered bentonites occcur as surficial alterations of some domestic bentonite deposits in the Tertiary formations, with the thickness of less than about 50 cm, along naturally-formed weathering surface with slopping in gentle. 7 $\AA$-halloysite was found together with montmorillonite in the weathered bentonite. Compared to normal bentonite, the weathered one is generally more clay-rich and contains little amounts of original rock-forming minerals and residues. In the electron microscopy, fine-scale occurrence of the clay minerals tends to be somewhat discrete and segregated rather than closely associated. h curled margin of montmorillonite lamella is deformed to become obtuse in the weathered bentonite. Halloysite occurs as acicular to tubular crystals with the length of less than 2 $\mu$m and the width of about 0.3 $\mu$m, which commonly forms bundle-shaped aggregates. Electron microscopic observations on the fine-scale occurrence and texture of the wtathered bentonites indicate that the clay mineral transition from montmorillonite to halloysite has undergone without accompanying any intermediate phases of both clay minerals such as a mixed-layered type (M/H). The alteration reaction between these two clay minerals probably took place in the form of dissolution and precipitation mechanism in oxidation condition. An intense chemical leaching of SiO$_2$, Na, K and Ca might occur during the alteration reaction, forming a lot of dissolution cavity and residual concentration of A1$_2$O$_3$ and Fe, relatively. As the result of the chemical change, a fsvorable condition for halloysite formation seemed to be provided.

A Study on the Properties of the PVDF Thin Film Prepared by Vacuum Deposition with Varying the Deposition Condition (진공증착법으로 제작한 PVDF 박막의 증착 조건에 따른 특성변화에 관한 연구)

  • 장동훈;강성준;윤영섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.565-571
    • /
    • 2003
  • We prepare the PVDF thin film using vacuum deposition method with the application of voltage and obtain the optimum deposition condition for $\beta$-PVDF thin film on the basis of the results of FT-IR, crystallinity of $\beta$ phase, surface roughness studies with varying the condition. The phase of PVDF thin film is analyzed by the FT-IR spectrum. When the substrate temperature and applied voltage increase from 3$0^{\circ}C$ to 9$0^{\circ}C$ and from 0kV to 9kV, respectively, the crystallinity of $\beta$ phase is introduced as large as 64%. It means that the substrate temperature and applied voltage allow the phase transition of $\beta$ phase to occur more easily. Also, the surface roughness of PVDF thin film decreases from 65.1nm to 36.6nm with the increase of substrate temperature. In results, we obtain the optimum deposition conditions for $\beta$-PVDF thin film from these experimental results and measure the Properties of the $\beta$-PVDF film deposited in the optimum condition. The dielectric properties such as dielectric constant and loss tangent decrease from 2.34 to 0.44 and from 0.27 to 0.04 with the increase of frequency, respectively.

Surface Composition and Molecular Diffusion on the Stability of Foams Formed from Protein/Surfactant Mixtures (단백질/계면활성제 혼합계에서 기포안정성에 대한 계면조성과 분자확산)

  • Park, Sun-Yeong;Kim, Myung-Soo;Jeong, Noh-Hee;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.158-166
    • /
    • 2000
  • A conductimetric study of foam formed from mixture of the protein, ${\beta}-lactoglobulin$, and the nonioinc surfactant, SML, revealed that their stability was reduced at concentrations of SML in the range $3{\sim}10mM$. The interaction of SML with ${\beta}-lactoglobulin$ was investigated by fluorimetry and a dissociation constant of $0.2{\mu}M$ was calculated for the complex. Surface tension studies confirmed the presence of interaction between the two components and provided evidence for the progressive displacement of ${\beta}-lactogloblin$ from the air/water interface with increasing SML concentration. Experiments using air-suspended microscopic thin liquid films revealed transitions in the chainage characteristics and thickness of the film at SML concentrations below that which resulted in destabilization of the foam. However, measurements of surface mobility of fluorescent-labeled ${\beta}-lactoglobulin$ by a photobleaching method identified that a transition to a mobile system occurred at a SML concentration which correlated with the onset of instability in the disperse phase. The results would indicate that maintenance of the viscoelastic properties of the surface is paramount importance in determining the stability of interfaces comprising mixtures of protein and surfactant.

Development of High Entropy Alloy Film using Magnetron Sputtering

  • Kim, Young Seok;Lim, Ki Seong;Kim, Ki Buem
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.129-129
    • /
    • 2018
  • Hard coating application is effective way of cutting tool for hard-to-machine materials such as Inconel, Ti and composite materials focused on high-tech industries which are widely employed in aerospace, automobile and the medical device industry also Information Technology. In cutting tool for hard-to-machine materials, high hardness is one of necessary condition along with high temperature stability and wear resistance. In recent years, high-entropy alloys (HEAs) which consist of five or more principal elements having an equi-atomic percentage were reported by Yeh. The main features of novel HEAs reveal thermodynamically stable, high strength, corrosion resistance and wear resistance by four characteristic features called high entropy, sluggish diffusion, several-lattice distortion and cocktail effect. It can be possible to significantly extend the field of application such as cutting tool for difficult-to-machine materials in extreme conditions. Base on this understanding, surface coatings using HEAs more recently have been developed with considerable interest due to their useful properties such as high hardness and phase transformation stability of high temperature. In present study, the nanocomposite coating layers with high hardness on WC substrate are investigated using high entropy alloy target made a powder metallurgy. Among the many surface coating methods, reactive magnetron sputtering is considered to be a proper process because of homogeneity of microstructure, improvement of productivity and simplicity of independent control for several critical deposition parameters. The N2 is applied to reactive gas to make nitride system with transition metals which is much harder than only alloy systems. The acceleration voltage from 100W to 300W is controlled by direct current power with various deposition times. The coating layers are systemically investigated by structural identification (XRD), evaluation of microstructure (FE-SEM, TEM) and mechanical properties (Nano-indenter).

  • PDF

Electrical Resistivity of ITZ According to the Type of Aggregate (골재 종류별 시멘트 경화체 계면의 전기저항 특성)

  • Kim, Ho-Jin;Bae, Je Hyun;Jung, Young-Hoon;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.268-275
    • /
    • 2021
  • The three factors that determine the strength of concrete are the strength of cement paste, aggregate and ITZ(Interfacial Transition Zone) between aggregate and cement paste. Out of these, the strength of ITZ is the most vulnerable. ITZ is formed in 10~50㎛, the ratio of calcium hydroxide is high, and CSH appears low ratio. A high calcium hydroxide ratio causes a decrease in the bond strength of ITZ. ITZ is due to further weak area. The problem of ITZ appears as a more disadvantageous factor when it used lightweight aggregate. The previous study of ITZ properties have measured interfacial toughness, identified influencing factors ITZ, and it progressed SEM and XRD analysis on cement matrix without using coarse aggregates. also it was identified microstructure using EMPA-BSE equipment. However, in previous studies, it is difficult to understand the microstructure and mechanical properties. Therefore, in this study, a method of measuring electrical resistance using EIS(Electrochemical Impedance Spectroscopy) measuring equipment was adopted to identify the ITZ between natural aggregate and lightweight aggregate, and it was tested the change of ITZ by surface coating of lightweight aggregate with ground granulated blast furnace slag. As a result, the compressive strength of natural aggregate and lightweight aggregate appear high strength of natural aggregate with high density, surface coating lightweight aggregate appear strength higher than natural aggregate. The electrical resistivity of ITZ according to the aggregate appeared difference.