Browse > Article
http://dx.doi.org/10.4191/KCERS.2010.47.4.343

Photoluminescence and Fabrication of Zirconia Nanofibers from Electrospinning an Alkoxide Sol Templated on a Polyvinyl Butyral  

Ko, Tae-Gyung (Division of Materials Science and Engineering, Inha University)
Han, Kyu-Suk (Division of Materials Science and Engineering, Inha University)
Rim, Tae-Kyun (Division of Materials Science and Engineering, Inha University)
Oh, Seoung-Gyu (Division of Materials Science and Engineering, Inha University)
Han, Sang-Whan (Division of Materials Science and Engineering, Inha University)
Publication Information
Abstract
A zirconia gel/polymer hybrid nanofiber was produced in a nonwoven fabric mode by electrospinning a sol derived from hydrolysis of zirconium butoxide with a polyvinyl butyral. Results indicated that the hydroxyl groups on the vinyl alcohol units in the backbone of the polymer were involved in the hydrolysis as well as grafting the hydrolyzed zirconium butoxide. In addition, use of acetic acid as a catalyst resulted in further hydrolysis and condensation in the sol, which led to the growth of -Zr-O-Zr- networks among the polymer chains. These networks gradually transformed into a crystalline zirconia structure upon heating. The as-spun fiber was smooth but partially wrinkled on the surface. The average fiber diameter was $690{\pm}110\;nm$. The fiber exhibited a strong but broad blue photoluminescence with its maximum intensity at a wavelength of ~410 nm at room temperature. When the fiber was heat-treated at $400^{\circ}C$, the fiber diameter shrunk to $250{\pm}60\;nm$. Nanocrystals which belonged to a tetragonal zirconia phase and were ~5 nm in size appeared. A strong white photoluminescence was observed in this fiber. This suggests that oxygen or carbon defects associated with the formation of the nanocrystals play a role in generating the photoluminescence. Further heating to $800^{\circ}C$ resulted in a monoclinic phase beginning to form In the heat-treated fibers, coloring occurred but varied depending on the heating temperature. Crystallization, coloring, and phase transition to the monoclinic structure influenced the photoluminescence. At $600^{\circ}C$, the fiber appeared to be fully crystallized to a tetragonal zirconia phase.
Keywords
Zirconia; Electrospinning; Sol-gel; Nanofibers; Photoluminescence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 K. Pokrovki, K. T. Jung, and A. T. Bell, “Investigation of CO and $CO_2$ Adsorption on Tetragonal and Monoclinic Zirconia,” Langmuir, 17 4297-303 (2001).   DOI
2 M. D. Lu and S. M. Yang, “Synthesis of Poly(3-hexylthiophene) Grafted $TiO_2$ Nanotube Composite,” J. Colliod Interface Sci., 333 128-34 (2009).   DOI
3 M. I. Osendi, J. S. Moya, C. J. Serna, and J. Soria, “Metastability of Tetragonal Zirconia Powders,” J. Am. Ceram. Soc., 68 [3] 135-39 (1985).   DOI
4 A. K. Deb, P. Chatterjee, and S. P. S. Gupta, “Structural Investigation of Tetragonally Stabilized $ZrO_2$ in ${\aplha}-Al_{2}O_{3}-ZrO_{2}$ Composites,” J. Appl. Cryst., 39 601-3 (2006).   DOI
5 R. Sui, J. M. H. Lo, and P. A. Charpentier, “Infrared and Computational Studies on Interactions of Carbon Dioxide and Titania Nanoparticles with Acetate Groups,” J. Phys. Chem. C, 113 21022-28 (2009).   DOI
6 R. Liu, B. He, and X. Chen, “Degradation of Poly(vinyl butyral) and Its Stabilization by Bases,” Polymer Degradation and Stability, 93 846-53 (2008).   DOI
7 E. F. López, V. S. Escribano, M. Panizza, M. M. Carnasciali, and G. Busca, “Vibrational and Electronic Spectroscopic Properties of Zirconia Powders,” J. Mater. Chem., 11 1891-97 (2001).   DOI
8 G. Ramis, G. Busca, and V. Lorenzelli, “Low-Temperature $CO_2$ Adsorption on Metal Oxides: Spectroscopic Characterization of Some Weakly Adsorbed Species,” Mater. Chem. Phys., 29 425-35 (1991).   DOI
9 L. A. Salam, R. D. Matthews, and H. Robertson, “Pyrolysis of Polyvinyl Butyral(PVB) Binder in Thermoelectric Green Tapes,” J. Euro. Ceram. Soc., 20 1375-83 (2000).   DOI
10 M. J. Hyatt and N. P. Bansal, “Phase Transformations in Xerogels of Mullite Composition,” J. Mater. Sci., 25 2815-21 (1990).   DOI
11 A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk, and N. Serpone, “Spectroscopic and Photoluminescence Studies of a Wide Band Gap Insulating Material: Powdered and Colloidal $ZrO_2$ Sols,” Langmuir, 14 5011-22 (1998).   DOI
12 C. Lin, C. Zhang, and J. Lin, “Phase Transformation and Photoluminescence Properties of Nanocrystalline $ZrO_2$ Powders Prepared via the Pechini-type Sol-Gel Process,” J. Phys. Chem. C, 111 3300-7 (2007).   DOI   ScienceOn
13 C. Zhang, C. Li, J. Yang, Z. Cheng, Z. Hou, Y. Fan, and J. Lin, “Tunable Luminescence in Monodisperse Zirconia Sphere,” Langmuir, 25 [12] 7078-83 (2009).   DOI   ScienceOn
14 H. Cao, X. Qiu, B. Luo, Y. Liang, Y. Zhang, R. Tan, M. Zhao, and Q. Zhu, “Synthesis and Room-Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires,” Adv. Funct. Mater., 14 [3] 243-46 (2004).   DOI
15 M. Benammar, “Techniques for Measurement of Oxygen and Air-to-Fuel Ratio Using Zirconia Sensors. A review,” Meas. Sci. Technol., 5 757-67 (1994).   DOI
16 B. Zhu, “Solid Oxide Fuel Cell(SOFC) Technical Challenges and Solutions from Nano-Aspects,” Int. J. Energy Res., 33 1126-37 (2009).   DOI
17 J. Li, X. Jiao, and D. Chen, “Preparation of Zirconia Fibers via a Simple Aqueous Sol-Gel Method,” J. Disp. Sci. Tech., 28 531-35 (2007).   DOI
18 J. L. Gole, S. M. Prokes, J. D. Stout, O. J. Glembocki, and R. Yang, “Unique Properties of Selectively Formed Zirconia Nanostructures,” Adv. Mater., 18 664-67 (2006).   DOI
19 G. Yu, L. Zhu, X. Wang, H. Che, G. Zhang, Z. Sun, H. Fan, X. Liu, and D. Xu, “Fabrication of Zirconia Mesoporous Fibers by Using Polyorganozirconium Compound as Precursor,” Microporous and Mesoporous Mater., 119 230-36 (2009).   DOI
20 D. Bhatia, M. Alam, and P.C. Sarkar, “Studies on Thermal Stress of Lac-Polyvinyl Butyral Resin Blends through Specular Reflectance Spectra,” Pigment & Resin Tech., 36 [6] 350-62 (2007).   DOI
21 H. Hayashi, H. Suzuki, and S. Kaneko, “Effect of Chemical Modification on Hydrolysis and Condensation Reaction of Zirconium Alkoxide,” J. Sol-Gel Sci. Tech., 12 87-94 (1998).   DOI
22 G. Socrates, “Infrared Characteristic Group Frequencies,” pp. 1-89, John Wiley & Sons, Hoboken, New Jersey, 1980.
23 S. Doeuff, M. Henry, C. Sanchez, and J. Livage, “Hydrolysis of Titanium Alkoxides: Modification of the Molecular Precursor by Acetic Acid,” J. Non-Cryst. Solids, 89 206-16 (1987).   DOI
24 A. C. Pierre, “Introduction to Sol-Gel Processing,” pp. 55-70, Kluwer Academic Publishers, Nowell, Massachusetts, 1998.
25 Y. Cong, B. Li, B. Lei, and W. Li, “Long Lasting Phosphorescent Properties of Ti Doped $ZrO_2$,” J. Lumin., 126 822-26 (2007).   DOI
26 K. Han and T. Ko, “Variation of Photoluminescence in Zirconia Gel by Pyrolysis(in Korean),” J. Kor. Ceram. Soc., 45 [2] 126-31 (2008).   과학기술학회마을   DOI
27 C. Sanchez, L. Rozes, F. Ribot, C. Laberty-Robert, D. Grosso, C. Sassoye, C. Boissiere, and L. Nicole, “Chimie douce : A Land of Opportunities for the Designed Construction of Functional Inorganic and Hybrid Organic-Inorganic Nanomaterials,” C. R. Chimie., 13 3-39 (2010).   DOI   ScienceOn
28 A. K. Dhaliwal and J. N. Hay, “The Characterization of Polyvinyl Butyral by Thermal Analysis,” Thermochimica Acta, 391 245-55 (2002).   DOI
29 Y. Zhang, Y. Ding, J. Gao, and J. Yang, “Mullite Fibres Prepared by Sol-Gel Method Using Polyvinyl Butyral,” J. Euro. Ceram. Soc., 29 1101-7 (2009).   DOI
30 W. Sigmund, H. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor, and J. C. Nino, “Processing and Structure Relationships in Electrospinning of Ceramic Fiber Systems,” J. Am. Ceram. Soc., 89 [2] 395-407 (2006).   DOI
31 R. H. J. Hannink, P. M. Kelly, and B. C. Muddle, “Transformation Toughening in Zirconia-Containing Ceramics,” J. Am. Ceram. Soc., 83 [3] 461-87 (2000).   DOI
32 K. Sayama and H. Arakawa, “Effect of Carbonate Addition on the Photocatalytic Decomposition of Liquid Water over a $ZrO_2$ Catalyst,” J. Photochem. Photobiol. A:Chem., 94 67-76 (1996).   DOI
33 N. Dharmaraj, C. H. Kim, and H. Y. Kim, “Synthesis and Characterisation of Zirconium Oxide Nanofibers by Electrospinning,” Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 36 29-32 (2006).   DOI
34 C. Shao, H. Guan, Y. Liu, J. Gong, N. Yu, and X. Yang, “A Novel Method for Making $ZrO_2$ Nanofibres via an Electrospinning Technique,” J. Cryst. Growth, 267 380-84 (2004).   DOI
35 A. Azad, “Fabrication of Yttria-Stabilized Zirconia Nanofibers by Electrospinning,” Mater. Lett., 60 62-72 (2006).
36 H. B. Zhang and M. J. Edirisinghe, “Electrospinning Zirconia Fiber From a Suspension,” J. Am. Ceram. Soc., 89 [6] 1870-75 (2006).   DOI
37 L. Li, P. Zhang, J. Liang, and S. M. Guo, “Phase Transformation and Morphological Evolution of Electrospun Zirconia Nanofibers During Thermal Annealing,” Ceram. Int., 36 589-94 (2010).   DOI
38 J. G. Lu, P. Chang, and Z. Fan, “Quasi-One-Dimensional Metal Oxide Materials-Synthesis, Properties and Applications,” Mater. Sci. and Eng. R, 52 49-91 (2006).   DOI
39 Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater., 15 [5] 353-89 (2003).   DOI