DOI QR코드

DOI QR Code

Electrical Resistivity of ITZ According to the Type of Aggregate

골재 종류별 시멘트 경화체 계면의 전기저항 특성

  • Kim, Ho-Jin (Department of Architectural Engineering, Mokwon University) ;
  • Bae, Je Hyun (Graduate School of Analytical Science and Technology, Chungnam National University) ;
  • Jung, Young-Hoon (Department of Architectural Engineering, Mokwon University) ;
  • Park, Sun-Gyu (Department of Architectural Engineering, Mokwon University)
  • 김호진 (목원대학교 건축공학과) ;
  • 배제현 (충남대학교 분석과학기술대학원) ;
  • 정용훈 (목원대학교 건축공학과) ;
  • 박선규 (목원대학교 건축공학과)
  • Received : 2021.08.03
  • Accepted : 2021.09.12
  • Published : 2021.09.30

Abstract

The three factors that determine the strength of concrete are the strength of cement paste, aggregate and ITZ(Interfacial Transition Zone) between aggregate and cement paste. Out of these, the strength of ITZ is the most vulnerable. ITZ is formed in 10~50㎛, the ratio of calcium hydroxide is high, and CSH appears low ratio. A high calcium hydroxide ratio causes a decrease in the bond strength of ITZ. ITZ is due to further weak area. The problem of ITZ appears as a more disadvantageous factor when it used lightweight aggregate. The previous study of ITZ properties have measured interfacial toughness, identified influencing factors ITZ, and it progressed SEM and XRD analysis on cement matrix without using coarse aggregates. also it was identified microstructure using EMPA-BSE equipment. However, in previous studies, it is difficult to understand the microstructure and mechanical properties. Therefore, in this study, a method of measuring electrical resistance using EIS(Electrochemical Impedance Spectroscopy) measuring equipment was adopted to identify the ITZ between natural aggregate and lightweight aggregate, and it was tested the change of ITZ by surface coating of lightweight aggregate with ground granulated blast furnace slag. As a result, the compressive strength of natural aggregate and lightweight aggregate appear high strength of natural aggregate with high density, surface coating lightweight aggregate appear strength higher than natural aggregate. The electrical resistivity of ITZ according to the aggregate appeared difference.

콘크리트의 강도를 결정하는 3가지 요인은 시멘트 페이스트의 강도, 골재의 강도, 골재와 시멘트페이스트 계면영역의 강도가 있다. 이 중 계면영역의 강도가 가장 취약하다. ITZ(Interfacial Transition Zone)는 10~50㎛로 형성되며, 수산화칼슘의 비율은 높아지고, CSH는 낮은 비율을 나타낸다. 높은 수산화칼슘 비율은 ITZ의 부착강도 저하의 원인이 된다. 이로인해 ITZ는 더 약한 영역이 된다. ITZ의 문제점은 경량골재를 활용할 때 더 불리한 요소로 나타난다. 계면특성의 기존연구는 계면파괴인성을 측정하고, 계면에 영향을 주는 인자들을 파악했고, 굵은 골재를 사용하지 않은 시멘트 경화체에 SEM과 XRD분석을 진행했다. 또한 EMPA-BSE장비를 활용하여 미세구조를 파악하였다. 하지만 기존의 연구에서는 미세구조와 역학적 성질 파악에 어려움이 있다. 따라서 본 연구에서는 천연골재와 경량골재 계면을 파악하기 위해 EIS측정 장비를 활용하여 전기저항을 측정하는 방식을 채택하였고, 경량골재 겉면을 고로슬래그 코팅을 통해 계면상태의 변화를 실험하였다. 실험결과, 천연골재와 경량골재의 압축강도는 밀도가 높은 천연골재 높은 강도를 나타냈고, 경량골재 표면 코팅 시 천연골재 이상의 강도를 나타냈으며, 골재 종류별 전기저항의 차이를 보였다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 20NANO-B156177-01)을 밝히고 이에 감사드립니다.

References

  1. An, K.S., Lee, K.M. (1998). A study of factors influencing the fracture toughness of mortar-aggregate interfaces, Journal of the Korean Society of Civil Engineers, 18(1-6), 819-828 [in Korean].
  2. Chang, J.H., Park, J.H. (2007). A study in the electrical circuit model of the electrode/electrolyte interface for improving electrochemical impedance fitting, The Transactions of The Korean Institute of Electrical Engineers, 55(6), 1087-1091 [in Korean].
  3. Jo, B.W., Yoon, K.W., Park, J.H., Kim. H. (2010). An experimental study on mechanical properties of ultra-high strength powder concrete, Journal of the Korea Concrete Institute, 22(3), 287-295 [in Korean]. https://doi.org/10.4334/JKCI.2010.22.3.287
  4. Kim, Y.S., Choi, H.G., Ohmiya, Y., Kim, G.Y. (2011). Effect of aggregate on mechanical properties of ultra-high strength concrete exposed to high temperature, Journal of the Korea Concrete Institute, 23(4), 431-440 [in Korean]. https://doi.org/10.4334/JKCI.2011.23.4.431
  5. Lee, K.H., Yang, K.H. (2018). Proposal for revision of lightweight aggregate concrete specifications based on in-situ quality control on concrete, Journal of the Korea Build Construction, 18(3), 211-218 [in Korean].
  6. Lee, S.H., Lim, D.S., Lee, S.H., Lee, J.H. (2013). Mechanism of strength development in ultra high strength concrete using the electric arc furnace oxidizing slag as fine aggregate, Journal of the Korea Concrete Institute, 25(1), 3-9 [in Korean], https://doi.org/10.4334/JKCI.2013.25.1.003
  7. Lyu, K., She, W. (2019). Determination of aggregate surface morphology at the interfacial transition zone (ITZ). JoVE (Journal of Visualized Experiments), (154), e60245.
  8. Moon, H., Kim, J.H., Lee, J.Y., Chung, C.W. (2014). Strength, absorption and interfacial properties of mortar using waste shells as fine aggregates, Journal of the Korea Institute of Building Construction, 14(6), 523-529 [in Korean]. https://doi.org/10.5345/JKIBC.2014.14.6.523
  9. Park, J.H., Lee, H.S. (2017). An experimental study of the corrosion behavior evaluation of rebar in concrete by using electrochemical impedance spectroscopy(EIS) method, Journal of the Korea Institute for Structural Maintenance and Inspection, 21(1), 83-90 [in Korean].
  10. Prokopski, G., Halbiniak, J. (2000). Interfacial transition zone in cementitious materials, Cement and Concrete Research, 30(4), 579-583. https://doi.org/10.1016/S0008-8846(00)00210-6
  11. Tao, G., Gao, C., Qiao, Z. (2017). Electrochemical impedance spectroscopy study of the compressive strength of concrete, International Journal of Electrochemical Science, 12, 11692-11700.
  12. Vargas, P., Restrepo-Baena, O., Tobon, J.I. (2017). Microstructural analysis of interfacial transition zone(ITZ) and its impact on the compressive strength of lightweight concretes, Construction and Building Materials, 137, 381-389. https://doi.org/10.1016/j.conbuildmat.2017.01.101
  13. Wasserman, R., Bentur, A. (1996). Interfacial interactions in lightweight aggregate concretes and their influence on the concrete strength, Cement and Concrete Composites, 18(1), 67-76. https://doi.org/10.1016/0958-9465(96)00002-9
  14. Yang, K.H. (2019). Evaluation of mechanical properties of lightweight concrete using bottom ash aggregates, Journal of the Korea Concrete Institute, 31(4), 331-337 [in Korean]. https://doi.org/10.4334/jkci.2019.31.4.331