• Title/Summary/Keyword: surface of revolution

Search Result 188, Processing Time 0.03 seconds

Viable Alternatives to in vivo Tests for Evaluating the Toxicity of Engineered Carbon Nanotubes

  • Kwon, Soon-Jo;Eo, Soo-Mi
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Carbon nanotubes (CNTs) stand at the frontier of nanotechnology and are destined to stimulate the next industrial revolution. Rapid increase in their production and use in the technology industry have led to concerns over the effects of CNT on human health and the environment. The prominent use of CNTs in biomedical applications also increases the possibility of human exposure, while properties such as their high aspect ratio (fiber-like shape) and large surface area raise safety concerns for human health if exposure does occur. It is crucial to develop viable alternatives to in vivo tests in order to evaluate the toxicity of engineered CNTs and develop validated experimental models capable of identifying CNTs' toxic effects and predicting their level of toxicity in the human respiratory system. Human lung epithelial cells serve as a barrier at the interface between the surrounding air and lung tissues in response to exogenous particles such as air-pollutants, including CNTs. Monolayer culture of the key individual cell types has provided abundant fundamental information on the response of these cells to external perturbations. However, such systems are limited by the absence of cell-cell interactions and their dynamic nature, which are both present in vivo. In this review, we suggested two viable alternatives to in vivo tests to evaluate the health risk of human exposure to CNTs.

Implementation of a distributed Control System for Autonomous Underwater Vehicle with VARIVEC Propeller

  • Nagashima, Yutaka;Ishimatsu, Takakazu;Mian, Jamal-Tariq
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.9-12
    • /
    • 1999
  • This paper presents the development of a control architecture for the autonomous underwater vehicle (AUV) with VARIVEC (variable vector) propeller. Moreover this paper also describes the new technique of controlling the servomotors using the Field Programmable Gate Array (FPGA). The AUVs are being currently used fur various work assignments. For the daily measuring task, conventional AUV are too large and too heavy. A small AUV will be necessary for efficient exploration and investigation of a wide range of a sea. AUVs are in the phase of research and development at present and there are still many problems to be solved such as power resources and underwater data transmission. Further, another important task is to make them smaller and lighter for excellent maneuverability and low power. Our goal is to develop a compact and light AUV having the intelligent capabilities. We employed the VARIVEC propeller system utilizing the radio control helicopter elements, which are swash plate and DC servomotors. The VARIVEC propeller can generate six components including thrust, lateral force and moment by changing periodically the blade angle of the propeller during one revolution. It is possible to reduce the number of propellers, mechanism and hence power sources. Our control tests were carried out in an anechoic tank which suppress the reflecting effects of the wall surface. We tested the developed AUV with required performance. Experimental results indicate the effectiveness of our approach. Control of VARIVEC propeller was realized without any difficulty.

  • PDF

Comparison the Mapping Accuracy of Construction Sites Using UAVs with Low-Cost Cameras

  • Jeong, Hohyun;Ahn, Hoyong;Shin, Dongyoon;Choi, Chuluong
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The advent of a fourth industrial revolution, built on advances in digital technology, has coincided with studies using various unmanned aerial vehicles (UAVs) being performed worldwide. However, the accuracy of different sensors and their suitability for particular research studies are factors that need to be carefully evaluated. In this study, we evaluated UAV photogrammetry using smart technology. To assess the performance of digital photogrammetry, the accuracy of common procedures for generating orthomosaic images and digital surface models (DSMs) using terrestrial laser scanning (TLS) techniques was measured. Two different type of non-surveying camera(Smartphone camera, fisheye camera) were attached to UAV platform. For fisheye camera, lens distortion was corrected by considering characteristics of lens. Accuracy of orthoimage and DSM generated were comparatively analyzed using aerial and TLS data. Accuracy comparison analysis proceeded as follows. First, we used Ortho mosaic image to compare the check point with a certain area. In addition, vertical errors of camera DSM were compared and analyzed based on TLS. In this study, we propose and evaluate the feasibility of UAV photogrammetry which can acquire 3 - D spatial information at low cost in a construction site.

Optimum Shape Design Techniques on Direct Roller of Molten Metal Considering Thickness Control of Width Direction (폭방향 두께제어를 고려한 용탕직접 압연로울의 최적형상 설계기법)

  • Kang, C.G.;Kim, Y.D.;Jung, Y.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.73-85
    • /
    • 1997
  • The rolling force and roll deformation behavior in the twin roll type strip continuous casting process has been computed to estimate the thermal charcteristics of a caster roll. To calculation of rolling force, the relationship between flow stress and strain for a roll material and casting alloy are assumed as a function of strain-rate and temperature because mechanical properties of a casting materials depends on tempera- ture. The three dimensional thermal dlastic-plastic analysis of a cooling roll has also been carried out to obtain a roll stress and plastic strain distributions with the commercial finite element analysis package of ANSYS. Temperature fields data of caster roll which are provided by authors were used to estimated of roll deformation. Roll life considering thermal cycle is calculated by using thermal elastic-plastic analysis results. Roll life is proposed as a terms of a roll revolution in the caster roll with and without fine failure model on the roll surface. To obtain of plastic strain distributions of caster roll, thermomechan- ical properties of roll sleeve with a copper alloy is obtained by uniaxial tensile test for variation of temperature.

  • PDF

The Shape Optimization of PLA Polymer Space Truss Using 3D Printer (3D 프린터를 활용한 PLA 폴리머 Space Truss의 최적화)

  • Bae, Jae-Hoon;Zhang, Zhi-Yu;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 2020
  • In the era of the Fourth Industrial Revolution, Various attempts are being made to converge new industries with IT industry to find new growth engines in the field of IT, maximizing efficiency in terms of productivity. 3D printers are also related to this, and various studies have been conducted worldwide to utilize them in the construction industry. At present, there is an active effort to study atypical structures using 3D printers. The most widely used method is the use of glass panels, however, the additional cost of the manufacturing process and thus the overall project cost cannot be ignored. In addition, the construction of the curvature of the existing two-way curved surface in the conventional flat joint method is not suitable for implementing an amorphous shape. In this paper, we propose an optimized shape through Abaqus analysis of various shapes of Space Truss interior using 3D printing technology using polymer.

A Study on Cutting Force Characteristics in Diamond Turning Process (다이아몬드 터닝 가공공정에서의 미세절삭력 특성 연구)

  • 정상화;김상석;차경래;김건희;김근홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.957-960
    • /
    • 1997
  • A complete quantitative understanding of DT has been difficult because the process represents such s broad field of research. The experimental measurement of tool force is a single area of DT which still covers a wide range of possibilities. Here are numerous parameters of the process which affect cutting forces. There are also many turnable materials of current interest. To obtain information toward a better understanding of the process, a few cutting parameters and materials were selected for detail study. It was decided that free-oxygen copper and 6061-T6 alloy aluminum would be the primary test materials. There are materials which other workers have also used because of there wide use in reflective applications. The experimental phase of the research project began by designing tests to isolate certain cutting parameters. The parameters chosen to study were those that affected the cross-sectional area of the uncut chip. The specific parameters which cause this area to vary are the depth of cut and infeed per revolution, or feedrates. Other parameter such a tool nose radius and surface roughness were investigated as they became relevant to the research.

  • PDF

Growth Monitoring for Soybean Smart Water Management and Production Prediction Model Development

  • JinSil Choi;Kyunam An;Hosub An;Shin-Young Park;Dong-Kwan Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.58-58
    • /
    • 2022
  • With the development of advanced technology, automation of agricultural work is spreading. In association with the 4th industrial revolution-based technology, research on field smart farm technology is being actively conducted. A state-of-the-art unmanned automated agricultural production demonstration complex was established in Naju-si, Jeollanam-do. For the operation of the demonstration area platform, it is necessary to build a sophisticated, advanced, and intelligent field smart farming model. For the operation of the unmanned automated agricultural production demonstration area platform, we are building data on the growth of soybean for smart cultivated crops and conducting research to determine the optimal time for agricultural work. In order to operate an unmanned automation platform, data is collected to discover digital factors for water management immediately after planting, water management during the growing season, and determination of harvest time. A subsurface drip irrigation system was established for smart water management. Irrigation was carried out when the soil moisture was less than 20%. For effective water management, soil moisture was measured at the surface, 15cm, and 30cm depth. Vegetation indices were collected using drones to find key factors in soybean production prediction. In addition, major growth characteristics such as stem length, number of branches, number of nodes on the main stem, leaf area index, and dry weight were investigated. By discovering digital factors for effective decision-making through data construction, it is expected to greatly enhance the efficiency of the operation of the unmanned automated agricultural production demonstration area.

  • PDF

Air Temperature Variation by Effect of Green Space Condition (녹지 조건에 따른 기온변화)

  • Yoon, Yong-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • In this study, we observed air temperature to make clear that land coverage condition and stand form has a certain relationship to air temperature during the night in various green space. And with revolution analysis, we interpreted relationship of air temperature distribution in the green space, The way of analysis is this land coverage rate and air temperature, of number of tree volume of tree air temperature. With this experimental result, we can propose green plan, which is taking into consideration lower effect of air temperature. In this result, lower zone is formed in forest and water area, higher zone is formed in paved surface and barren ground. but this gap is a little. arbor+subarbor area, in the point of water area surrounded stand is formed relative lower air temperature. As a result to make up efficiency lower air temperature area, it is needed to make water area which has surrounded forest, and it is needed to make stand form lower air temperature 2~3 layer forest. In order of arbor, subarbor, shrub, the lower air temperature is more effect.

Eulerian Two-Phase Flow Analysis for Solid-Liquid Mixing in a Industrial Mixer (산업용 교반기의 고체-액체 혼합에 대한 Eulerian Two-Phase 유동해석)

  • Song, Ae-Kyung;Hur, Nahm-Keon;Won, Chan-Shik;Ahn, Ick-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.471-474
    • /
    • 2006
  • The Mixer is apparatus that help precipitation or an inhomogeneous distribution of various phases to be mixed and that user makes necessary material mixing one or the other. Mainly the mixer which is used from chemical and food industry is very important system in engineering that mixes the material. The inside flow of the mixer under the actual states which put a basis in flow of the fluid is formed rotation of the impeller. The inside flow of impeller will be caused by various reasons change with shape of impeller, number of rotation, mixing material and flow pattern of free surface etc. Also mixer study depended in single-phase flow and experimental research. So the numerical analysis of flow mixing solid-fluid particle is simulated. It is become known, that the case where agitator inside working fluid includes the solid particle the sinkage reverse which the solid particle has decreases an agitation efficiency. From the research which it sees the hazard solid which examines the effect where the change of the sinkage territory which it follows agitation number of revolution and diameter of the particle goes mad to an agitator inside flow distribution - numerical analysis the inside flow distribution of liquid state with Eulerian Two-Phase Method.

  • PDF

A Study on Development of Bent Chair Using Dyed-Glued Laminated Wood (염색집성목을 이용한 곡목의자의 개발에 관한 연구)

  • Kim, Dong Kooi
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.3
    • /
    • pp.273-285
    • /
    • 2013
  • The bent wood technique has been used for making the bow, the musical instruments and the wagon wheel, The Winsor chair of England in 1730's was the first Lfurniture product by using this method. This method was spread out by Michael Thonet in Austria after the Industrial Evolution. Early making technique of Winsor chair was relatively easy, but Michael Thonet's bent chair was mass produced by the machine and launched the revolution in the industrial furniture. 20th-Century European furniture designers applied the method of layering and forming plywood to bent chairs, enhanced the function and conformability. The bent chair had a big impact on modern chair design. The bent chair has the formative beauty and convenience from the character of softness and colors of wooden materials and has been developed variously by furniture designers. This study is a new approach to use Dyed-Gathered Wood with various colors and patterns as a material of the bend wood. First, bent wood with the Dyed-Gathered Wood enhances a close texture of wooden material textures instead of coating the surface. Second, flexibility of the bent wood with the Dyed-Gathered Wood enables wood bending techniques. Lastly, the Dyed-Gathered Wood is made with relatively cheap woods, replaces expensive imported woods which cause product price rise. This method enables a material cost saving and a stable supply of material.

  • PDF