• Title/Summary/Keyword: surface model

Search Result 10,467, Processing Time 0.036 seconds

A Study on Local Hole Filling and Smoothing of the Polygon Model (폴리곤모델의 국부적 홀 메움 및 유연화에 관한 연구)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.190-199
    • /
    • 2006
  • A new approach which combines implicit surface scheme and recursive subdivision method is suggested in order to fill the holes with complex shapes in the polygon model. In the method, a base surface is constructed by creating smooth implicit surface from the points selected in the neighborhood of holes. In order to assure C$^1$ continuity between the newly generated surface and the original polygon model, offset points of same number as the selected points are used as the augmented constraint conditions in the calculation of implicit surface. In this paper the well-known recursive subdivision method is used in order to generate the triangular net with good quality using the hole boundary curve and generated base implicit surface. An efficient anisotropic smoothing algorithm is introduced to eliminate the unwanted noise data and improve the quality of polygon model. The effectiveness and validity of the proposed method are demonstrated by performing numerical experiments for the various types of holes and polygon model.

Calcuation of Stress Free Surface Profile of Stock in Red Rolling(I) (선재 압연의 소재 자유표면 형상 계산(I))

  • 이영석;최상우;유선준;주웅용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.78-87
    • /
    • 1999
  • A mathematical model for the stress free surface profile in Over-Round and Round-Oval grove rolling, which can be used effectively in the calculation of pass area, is presented. The new model has generality, simplicity and accuracy for practical usage. The stress free surface profile of an outgoing stock can be modeled when the maximum spread of it known a priori. The equation for the stress free surface profile is formulated from the linear interpolation of the radius of curvature of an incoming stock and that of roll groove to the axis direction. In developing the analytical model, the effect of rolling temperature and friction between roll and work piece(stock) were not considered since the geometry of roll groove and the incoming work piece were assumed a dominant factor which decides the stress free surface profile of the outgoing stock. A simulation with the analytical model developed also has been carried out to demonstrate the stress free surface profile of the outgoing stock.

  • PDF

Analysis on the Precision Machining in End Milling Operation by Simulating Surface Generation (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.229-236
    • /
    • 1999
  • The surface, generated by end milling operation, is deteriorated by tool runout, vibration, tool wear and tool deflection, etc. Among them, the effect of tool deflection on surface accuracy is analyzed. Surface generation model for the prediction of the topography of machined srufaces has been developed based on cutting mechanism and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool due to cutting force. For the more accurate prediction of cutting force, flexible end mill model is used to simulate cutting process. Computer simulation has shown the feasibility of the surface generation system. Using developed simulation system, the relations between the shape of end mill and cutting conditions are analyzed.

  • PDF

Development of Road Surface Temperature Prediction Model using the Unified Model output (UM-Road) (UM 자료를 이용한 노면온도예측모델(UM-Road)의 개발)

  • Park, Moon-Soo;Joo, Seung Jin;Son, Young Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.471-479
    • /
    • 2014
  • A road surface temperature prediction model (UM-Road) using input data of the Unified Model (UM) output and road physical properties is developed and verified with the use of the observed data at road weather information system. The UM outputs of air temperature, relative humidity, wind speed, downward shortwave radiation, net longwave radiation, precipitation and the road properties such as slope angles, albedo, thermal conductivity, heat capacity at maximum 7 depth are used. The net radiation is computed by a surface radiation energy balance, the ground heat flux at surface is estimated by a surface energy balance based on the Monin-Obukhov similarity, the ground heat transfer process is applied to predict the road surface temperature. If the observed road surface temperature exists, the simulated road surface temperature is corrected by mean bias during the last 24 hours. The developed UM-Road is verified using the observed data at road side for the period from 21 to 31 March 2013. It is found that the UM-Road simulates the diurnal trend and peak values of road surface temperature very well and the 50% (90%) of temperature difference lies within ${\pm}1.5^{\circ}C$ (${\pm}2.5^{\circ}C$) except for precipitation case.

Impact of Bidirectional Interaction between Sewer and Surface flow on 2011 Urban Flooding in Sadang stream watershed, Korea

  • Pakdimanivong, Mary;Kim, Yeonsu;Jung, Kwansue;Li, Heng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.397-397
    • /
    • 2015
  • The frequency of urban floods is recently increased as a consequence of climate change and haphazard development in urban area. To mitigate and prevent the flood damage, we generally utilized a numerical model to investigate the causes and risk of urban flood. Contrary to general flood inundation model simulating only the surface flow, the model needs to consider flow of the sewer network system like SWMM and ILLUDAS. However, this kind of model can not consider the interaction between the surface flow and drainage network. Therefore, we tried to evaluate the impact of bidirectional interaction between sewer and surface flow in urban flooding analysis based on simulations using the quasi-interacted model and the interacted model. As a general quasi-interacted model, SWMM5 and FLUMEN are utilized to analyze the flow of drainage network and simulate the inundation area, respectively. Then, FLO-2D is introduced to consider the interaction between the surface flow and sewer system. The two method applied to the biggest flood event occurred in July 2011 in Sadang area, South Korea. Based on the comparison with observation data, we confirmed that the model considering the interaction the sewer network and surface flow, showed a good agreement than the quasi-interacted model.

  • PDF

Calibration and uncertainty analysis of integrated surface-subsurface model using iterative ensemble smoother for regional scale surface water-groundwater interaction modeling

  • Bisrat Ayalew Yifru;Seoro Lee;Woon Ji Park;Kyoung Jae Lim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.287-287
    • /
    • 2023
  • Surface water-groundwater interaction (SWGI) is an important hydrological process that influences both the quantity and quality of water resources. However, regional scale SWGI model calibration and uncertainty analysis have been a challenge because integrated models inherently carry a vast number of parameters, modeling assumptions, and inputs, potentially leaving little time and budget to explore questions related to model performance and forecasting. In this study, we have proposed the application of iterative ensemble smoother (IES) for uncertainty analysis and calibration of the widely used integrated surface-subsurface model, SWAT-MODFLOW. SWAT-MODFLOW integrates Soil and Water Assessment Tool (SWAT) and a three-dimensional finite difference model (MODFLOW). The model was calibrated using a parameter estimation tool (PEST). The major advantage of the employed IES is that the number of model runs required for the calibration of an ensemble is independent of the number of adjustable parameters. The pilot point approach was followed to calibrate the aquifer parameters, namely hydraulic conductivity, specific storage, and specific yield. The parameter estimation process for the SWAT model focused primarily on surface-related parameters. The uncertainties both in the streamflow and groundwater level were assessed. The work presented provides valuable insights for future endeavors in coupled surface-subsurface modeling, data collection, model development, and informed decision-making.

  • PDF

High-Frequency Bistatic Scattering from a Corrugated Sediment Surface

  • Cho, Hong-Sang;La, Hyoung-Sul;Yoon, Kwan-Seob;Na, Jung-Yul;Kim, Bong-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2E
    • /
    • pp.60-68
    • /
    • 2006
  • High-frequency bistatic scattering measurements from a corrugated surface were made in an acoustic water tank. First the azimuthal scattering pattern was measured from an artificially corrugated surface which has varying impedance. The corrugated surface was installed both transverse to the direction of incident wave and longitudinal to the direction of incident wave. The angle between the corrugated surface and the direction of the incident wave was about $45^{\circ}$. Second, the scattering strengths were measured from the flat sediment and the corrugated sediment. A critical angle of about $37^{\circ}$ was calculated in the acoustic water tank. The measurements were made at three fixed grazing angles: $33^{\circ}$ (lower than critical angle), $37^{\circ}$ (critical angle), and $41^{\circ}$ (higher than critical angle). The scattering angle and the grazing angle are equal in each measurement. Frequencies were from 50 kHz to 100 kHz with an increment of 1 kHz. The corrugated sediment was made transverse to the direction of the incident wave. The first measurement indicates that the scattering patterns depend on the relations between the corrugated surface and the direction of the incident wave. In the second measurement, the data measured from the flat sediment were compared to the APL-UW model and to the NRL model. The NRL model's output shows more favorable comparisons than the APL-UW model. In case of the corrugated sediment, the model and the measured data are different because the models used an isotropic wave spectrum of sediment roughness in the scattering calculations. The isotropic wave spectrum consists of $w_2$ and ${\gamma}_2$. These constants derived from sediment names or bulk size. The model which used the constants didn't consider the effect of a corrugated surface. In order to consider a corrugated surface, the constants were varied in the APL-UW model.

A Study on Filling Holes of Large Polygon Model using Implicit Surface Scheme and Domain Decomposition Method (음함수 곡면기법과 영역 분할법을 이용한 대형 폴리곤 모델의 홀 메움에 관한 연구)

  • Yoo Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.174-184
    • /
    • 2006
  • In order to fill the holes with complex shapes in the large polygon model, a new approach which is based on the implicit surface interpolation method combined with domain decomposition method is presented. In the present study, a surface is constructed by creating smooth implicit surface from the incomplete polygon model through which the surface should pass. In the method an implicit surface is defined by a radial basis function, a continuous scalar-valued function over the domain $R^3$ The generated surface is the set of all points at which this scalar function takes on the value zero and is created by placing zero-valued constraints at the vertices of the polygon model. In this paper the well-known domain decomposition method is used in order to treat the large polygon model. The global domain of interest is divided into smaller domains where the problem can be solved locally. LU decomposition method is used to solve a set of small local problems and their local solutions are combined together using the weighting coefficients to obtain a global solution. In order to show the validity of the present study, various hole fillings are carried out fur the large and complex polygon model of arbitrary topology.

A Thrombus Growth Model Based on Level Set Methods

  • Ma, Chaoqing;Gwun, Oubong
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.137-142
    • /
    • 2016
  • In this paper, a multi-scale model is applied to the simulation of thrombus growth. This model includes macroscale model and microscale model. The former is used to model the plasma flow with Navier-Stokes equations, and the latter is used to model the platelets adhesion and aggregation, thrombus motion, and the surface expansion of thrombus. The force acting on platelets and thrombus from plasma is modeled by the drag force, and the forces from biochemical reactions are modeled by the adhesion force and the aggregation force. As more platelets are merged into the thrombus, the thrombus surface expands. We proposed a thrombus growth model for simulating the expansion of thrombus surface and tracking the surface by Level Set Methods. We implemented the computational model. The model performs well, and the experimental results show that the shape of thrombus in level set expansion form is similar with the thrombus in clinical test.