• Title/Summary/Keyword: surface lubrication

Search Result 578, Processing Time 0.024 seconds

Study on the Friction Wear Characteristic of the Surface of Door guide rail for Automobile (자동차용(自動車用) Door guide rail 표면의 마찰마모 특성에 관한 연구)

  • Han, Chang-Woo;Son, Jae-Hwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • Door guide rail is the core part which guides window when it moves up and down. But when the method of grease lubrication in the core has been used for a long times, its lubrication performance has been weakened. Therefore the method of the solid lubrication such as teflon(PTFE) coating in the rail has been studied to be increased the performance in these days. In this study the friction wear characteristic the surface with teflon coating of door guide rail for automobile has been researched. In 1, 20 Hz frequency friction wear tests the friction coefficient are below 0.188 and 0.213. In indicate test the wear depth is very slight. Therefore the durability to the friction wear in the surface with teflon coating of door guide rail is good. In addition to, the result of this study can make efficient use to a basic study to develop method of test evaluation to door guide rail surface grade. Especially this study will contribute to improve the quality of automobile parts.

  • PDF

Study on the Evaluation of Frictional Drag Reduction by Air Lubrication and the Arrangement of Air Injection Parts for a Liquefied Natural Gas Carrier (공기윤활에 의한 액화천연가스운반선의 마찰저항저감 평가 및 공기 분사부 배치에 대한 연구)

  • Kim, Hee-Taek;Kim, Hyoung-Tae;Kim, Hyun-Joe;Kim, Jung-Joong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.144-157
    • /
    • 2021
  • Brake Horse Power (BHP) reduction ratios by air injection to the underside of the hull surface in an actual ship are predicted using an unstructured finite-volume CFD solver and compared with the sea trial results. In addition, air lubrication system installed on the existing vessel is investigated to find a good solution for additional drag reduction. As a results, it is found that the thickness of the air layer should be minimized within a stable range while securing the area covered by the air layer as much as possible. Furthermore, the amount of frictional drag reduced by air injection is found to be independent of surface roughness and still effective on rough surface. Based on the results of this study, it is expected that systematic and reliable air lubrication system can be designed and evaluated using the proposed method.

Tribological Behavior of Mono- and Multilayer Coverings on Silicon Surface

  • Zhavnerko, G.K.;Ahn, Hyo-Sok;Ondarcuhu, T.;Chizhik, S.A.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.43-44
    • /
    • 2002
  • Langmuir-Blodgett mono- and multilayer films from 2,4-heneicosanedione have been examined as lubrication coatings In the process of wear. Tribological properties of the films have been studied by atomic force microscopy and microtribometer. It has been observed that the wear resistance of silicon surface coated with OTS/LB multilayer system increased by several orders of magnitude compared to uncoated surfaces at low normal load. The results obtained suggest that the system constructed on silicon surface reduces surface energy, friction coefficient and increases life of substrate due to a possibility of LB film self-repairing during frictional contact.

  • PDF

Elasto-hydrodynamic Lubrication Analysis for Biomimetic Riblet Surface like Shark Skin (상어표피 모사 리블렛 구조의 탄성유체윤활 해석)

  • Kim, Tae-Wan
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.128-134
    • /
    • 2014
  • For the characteristic assessment of biomimetic shark skin structure pattern for engineering applications, we conducted the elastic hydrodynamic lubrication analysis for the shark skin surface pattern. The shark skin surfaces with roughness are generated numerically in the similar size with real shark skin scales. For the spherical contact on the generated shark skin surface with two different flow directions which are transversal and longitudinal, 3-dimensional elasto-hydrodynamic lubraction analysis are carried out. The result of the longitudinal flow which are similar with the flow of shark skin shows more beneficial effects with lower pressure and less sensitive effect with surface roughness.

A Study on the Machinability Evaluation According to Lubrication Conditions and Taper Angle for Turning of SCM440 (SCM440 의 선삭에서 윤활조건과 테이퍼 각에 따른 가공성 평가에 관한 연구)

  • Choi, Min-Seok;Kim, Dong-Hyeon;Hwang, Seong-Ju;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • Recently, in industry field, many researchers are looking for ways to reduce the use of lubricant because of environmental and economical reasons. MQL lubrication is one of many lubrication technologies. The aim of this study is to evaluate the machinability considering lubrication methods and taper angles of workpieces for turning of SCM440. Workpieces of two shapes such as workpiece with and without taper angle are used. And two lubrication methods such as MQL and Wet have been considered. And cutting force and surface roughness are used as characteristic values. Cutting speed, feed rate, injection angle and distance are used as design parameters. The characteristic values were statistically analyzed by Taguchi method. From the results, main effects plot and importance of each parameter according to conditions are analyzed. Finally, this study has been suggested the optimum machining conditions according to the lubrication methods, machining conditions and shape of workpiece.

Characteristic of Friction on Texturing Bearing Steel with Ultrasonic Hole Machine

  • Shin, Mijung;H., Angga Senoaji;Kwon, SoonHong;Chung, SungWon;Kwon, SoonGoo;Park, JongMin;Kim, JongSoon;Choi, WonSik
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • We carry out experiments to characterize textured bearing steel with varying hole density and depth. Textured surface is believed to reduce the friction coefficient, and improve performance and wearing caused by third-body contact. We employ three lubrication regime conditions based on the Stribeck curve: boundary lubrication, mixed lubrication, and hydrodynamic lubrication. Ultrasonic machining is an untraditional machining method wherein abrasive grit particles are used. The hammering process on the work piece surface by abrasive provides the desired form. In this study, we create multi-holes on the bearing steel surface for texturing purposes. Holes are formed by an ultrasonic machine with a diameter of 0.534 mm and a depth of about 2-4 mm, and they are distributed on the contact surface with a density between 1.37-2.23%. The hole density over the surface area is an important factor affecting the friction. We test nine types of textured specimens using four times replication and compare them with the untextured specimen using graphs, as well as photographs taken using a scanning electron microscope. We use Analyzes variant in this experiment to find the correlation between each pair of treatments. Finally, we report the effect of hole density and depth on the friction coefficient.

Effect of kurtosis on the Flow Factors Using Average Flow Model

  • Cho, Yong-Joo;Kim, Tae-Wan;Koo, Young-Pil
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.7-11
    • /
    • 2002
  • The roughness effects are very important due to the presence of interacting asperities in mixed lubrication regime. An average Reynolds equation using flow factors is useful to determine the effects of surface roughness on mixed lubrication. In this study, the effect of kurtosis on flow factors is investigated using random rough surfaces generated numerically, The results show that flow factors are very sensitive to h/$\sigma$ according to the value of kurtosis in the partial lubrication regime.

Design optimization for analysis of surface integrity and chip morphology in hard turning

  • Dash, Lalatendu;Padhan, Smita;Das, Sudhansu Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.561-578
    • /
    • 2020
  • The present work addresses the surface integrity and chip morphology in finish hard turning of AISI D3 steel under nanofluid assisted minimum quantity lubrication (NFMQL) condition. The surface integrity aspects include microhardness, residual stress, white layer formation, machined surface morphology, and surface roughness. This experimental investigation aims to explore the feasibility of low-cost multilayer (TiCN/Al2O3/TiN) coated carbide tool in hard machining applications and to assess the propitious role of minimum quantity lubrication using graphene nanoparticles enriched eco-friendly radiator coolant based nano-cutting fluid for machinability improvement of hardened steel. Combined approach of central composite design (CCD) - analysis of variance (ANOVA), desirability function analysis, and response surface methodology (RSM) have been subsequently employed for experimental investigation, predictive modelling and optimization of surface roughness. With a motivational philosophy of "Go Green-Think Green-Act Green", the work also deals with economic analysis, and sustainability assessment under environmental-friendly NFMQL condition. Results showed that machining with nanofluid-MQL provided an effective cooling-lubrication strategy, safer and cleaner production, environmental friendliness and assisted to improve sustainability.

In-situ Observations of Lubricant Film Thickness Distribution in Mixed EHD Point Contacts

  • Hartl, M.;Krupka, I.;Liska, M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.79-80
    • /
    • 2002
  • This paper presents an experimental study of the effect of rolling speed and surface roughness on the mixed elastohydrodynamic (EHD) lubrication characteristics for point contact formed between a real, random, rough surface, steel ball and smooth glass disc. The Thin Film Colorimetic Interferometry measurement technique has been extended to give detailed information about in-contact deformation of the microgeometry. It has enabled to derive the amplitude reduction curve that shows progressive recovering of ball roughness features with increasing speed.

  • PDF