• Title/Summary/Keyword: surface integral

Search Result 536, Processing Time 0.031 seconds

A Potential-Based Panel Method for the Analysis of A Two-Dimensional Super-Cavitating Hydrofoil (양력판(揚力板) 이론(理論)에 의(依)한 2차원(次元) 수중익(水中翼)의 초월(超越) 공동(空洞) 문제(問題) 해석(解析))

  • Y.G. Kim;C.S. Lee;J.T. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.159-173
    • /
    • 1991
  • This paper describes a potential-based panel method formulated for the analysis of a super-cavitating two-dimensional hydrofoil. The method employs normal dipoles and sources distributed on the foil and cavity surfaces to represent the potential flow around the cavitating hydrofoil. The kinematic boundary condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the fictitious inner flow region of the foil, and the dynamic boundary condition on the cavity surface is satisfied by requiring thats the potential vary linearly, i.e., the tangential velocity be constant. Green's theorem then results in a potential-based integral equation rather than the usual velocity-based formulation of Hess & Smith type. With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with improved accuracy compared to those of the linearized lilting surface theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. This iteration process is repeated until the results are converged. Characteristics of iteration and discretization of the present numerical method are much faster and more stable than the existing nonlinear theories. The theory shows good correlations with the existing theories and experimental results for the super-cavitating flow. In the region of small angles of attack, the present prediction shows and excellent comparison with the Geurst's linear theory. For the long cavity, the method recovers the trends of the Wu's nonlinear theory. In the intermediate regions of the short super-cavitation, the method compares very well with the experimental results of Parkin and also those of Silberman.

  • PDF

A Study on Generation and Operation of Dynamic Pattern at Micro-stereolithography using $DMD^{TM}$ ($DMD^{TM}$를 이용한 마이크로 광 조형 시스템에서 다이나믹 패턴 생성 및 구동에 관한 연구)

  • Kim H.S.;Choi J.W.;Ha Y.M.;Kwon B.H.;Won M.H.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1214-1218
    • /
    • 2005
  • As demands for precision parts are increased, existing methods to fabricate them such as MEMS, LIGA technology have the technical limitations like high precision, high functionality and ultra miniaturization. A micro-stereolithography technology based on $DMD^{TM}$(Digital Micromirror Device) can meet these demands. In this technology, STL file is the standard format as the same of conventional rapid prototyping system, and 3D part is fabricated by stacking layers that are sliced as 2D section from STL file. Whereas in conventional method, the resin surface is cured as scanning laser beam spot according to the section shape, but in this research, we use integral process which enables to cure the resin surface at one time. In this paper, we deal with the dynamic pattern generation and $DMD^{TM}$ operation to fabricate micro structures. Firstly, we address effective slicing method of STL file, conversion to bitmap, and dynamic pattern generation. Secondly, we suggest $DMD^{TM}$ operation and optimal support manufacturing for $DMD^{TM}$ mounting. Thirdly, we examine the problems on continuous stacking layers, and their improvements in software aspects.

  • PDF

Real-time Soft-shadow using Shadow Atlas (그림자 아틀라스를 이용한 부드러운 그림자 생성 방법)

  • Park, Sun-Yong;Yang, Jin-Suk;Oh, Kyoung-Su
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • In computer graphics, shadows play a very important role as a hint of inter-object distance as well as themselves in terms of realism. To represent shadows, some traditional methods such as shadow mapping and shadow volume have been frequently used for the purpose. However, the rendering results are not natural since they assume the point light. On the contrary, an area light can render soft-shadows, but its computation is too burdensome due to integral over the whole light source surface. Many alternatives have been introduced, back-projection of occluder onto the light source to get visibility of light or filtering of shadow boundary by calculating size of penumbra. But they also have problems of light bleeding or ringing effects because of low order approximation, or low performance. In this paper, we describe a method to improve those problems using shadow atlas.

Surface Flux Measurements at King Sejong Station in West Antarctica: I. Turbulent Characteristics and Sensible Beat Flux (남극 세종기지에서의 지표 플럭스 관측: I. 난류 특성과 현열 플럭스)

  • Choi, Tae-Jin;Lee, Bang-Yong;Lee, Hee-Choon;Shim, Jae-Seol
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.453-463
    • /
    • 2004
  • The Antarctic Peninsula is important in terms of global warming research due to pronounced increase of air temperature over the last century. The first eddy covariance system was established at King Sejong Station located in the northern region of the Antarctic Peninsula in December of 2002 and has been operated over one year. Here, we analyze turbulent characteristics to determine quality control criteria for turbulent sensible heat flux data as well as to diagnose the possibility of long term eddy covariance measurement under extreme weather conditions of the Antarctic Peninsula. We also report the preliminary result on sensible heat flux. Based on the analyses on turbulent characteristics such as integral turbulence characteristics of vertical velocity (w) and heat (T), stationarity test and investigation of correlation coefficient, they fallow the Monin-Obukhov similarity and eddy covariance flux data were reliable. ${\sim}47%$ of total retrieved sensible heat flux data could be used for further analysis. Daytime averaged sensible heat flux showed a pronounced seasonal variation, with a maximum of up to $300Wm^{-2}$ in summer. In conclusion, continuous and long-term eddy covariance measurement may be possible at the study site and the land surface may influence the atmosphere significantly through heat transport in summer.

Surface Imaging of Barley Aleurone Cell by Atomic Force Microscopy

  • Kim, Tae-Wan;Huh, Kwang-Woon;Kim, Seung-Hwan;Ku, Hyun-Hwoi;Lee, Byung-Moo;Kim, Jae-Yoon;Seo, Yong-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.36-40
    • /
    • 2004
  • To observe and analysis ultra-microscopically barley aleurone cell surface, atomic force microscope (AFM) was used. Seed coat of early maturing germplasm, eam9, was dehulled and scanned by non-contact mode. We have obtained the high resolution topographic 3-dimensional image of barley aleurone layer with high resolution. These images showed the membrane proteins in barley aleurone cell. One channel protein and numerous peripheral or integral proteins were detected in a area of 100 $\mu\textrm{m}^2$. Furthermore, we found that their widths were ranged from 50 to 750nm and lengths from 0 to 66 $\mu\textrm{m}$. The thickness of aleurone layer was measured by scanning electron microscope. The thickness at early developmental stage was about 16 and then the aleurone cell enlarged upto 57 $\mu\textrm{m}$${\mu}{\textrm}{m}$ at least until 42 days after anthesis. In this study, we firstly reported on the ultrastructural AFM analysis of living aleurone cell as a biological specimen. It was clearly suggested that AFM will become an powerful tool for probing both the structural properties of biological samples.

Current Effect on the Motion and Drift Force of Cylinders Floating in Waves (주상체(柱狀體)의 운동(運動) 및 표류력(漂流力)에 미치는 해류(海流)의 영향(影響))

  • Sei-Chang,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.25-34
    • /
    • 1986
  • A two-dimensional linear method has been developed for the motion and the second-order steady force arising from the hydrodynamic coupling between waves and currents in the presence of a body of arbitrary shape. Interaction between the incident wave and current in the absence of the body lies in the realm beyond our interest. A Fredholm integral equation of the second kind is employed in association with the Haskind's potential for a steadily moving source of pulsating strength located in or below the free surface. The numerical calculations at the preliminary stage showed a significant fluctuation of the hydrodynamic forces on the surface-piercing body. The problem is approximately solved by using the asymptotic Green function for $U^2{\rightarrow}0$. The original Green function, however, is applied for the fully submerged body. Numerical calculations are made for a submerged and for a half-immersed circular cylinder and extensively for the mid-ship section of a Lewis-form. Some of the results are compared with other analytical results without any available experimental data. The current has strong influence on roll motion near resonance. When the current opposes the waves, the roll response are generally negligible in the low frequency region. The current has strong influence on roll motion near resonance. When the current opposes the wave, the roll response decreases. When the current and wave come from the same direction, the roll response increases significantly, as the current speed increases. The mean drift forces and moment on the submerged body are more affected by current than those on the semi-immersed circular cylinder or on the ship-like section in the encounter frequency domain.

  • PDF

Analysis of Hyperbolic Heat Conduction in a Thin Film (박막에서 쌍곡선형 열전도 방정식에 의한 열전도 해석)

  • 정우남;이용호;조창주
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.540-545
    • /
    • 1999
  • The classical Fourier heat conduction equation is invalid at temperatures near absolute zero or at very early times in highly transient heat transfer processes. In such situations, a hyperbolic equation model for heat conduction based on the modified Fourier law is introduced because the wave nature of heat propagation becomes dominant. The Fourier model and the hyperbolic model for heat conduction are analyzed by using the Green's function technique together with the integral transform. Analytical expressions for the heat flux and temperature distributions in a finite slab subjected to a periodic surface heating at one of its surfaces are presented and the results obtained from each model are compared with each other. The thermal wave implied b the hyperbolic model is shown to travel through a medium and to reflect back toward the origin at the other insulated surface. On the other hand, the heat by the Fourier model propagates at an infinite speed instantaneously after a thermal disturbance is felt throughout the medium.

  • PDF

Feature Extraction and Evaluation for Classification Models of Injurious Falls Based on Surface Electromyography

  • Lim, Kitaek;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.28 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • Background: Only 2% of falls in older adults result in serious injuries (i.e., hip fracture). Therefore, it is important to differentiate injurious versus non-injurious falls, which is critical to develop effective interventions for injury prevention. Objects: The purpose of this study was to a. extract the best features of surface electromyography (sEMG) for classification of injurious falls, and b. find a best model provided by data mining techniques using the extracted features. Methods: Twenty young adults self-initiated falls and landed sideways. Falling trials were consisted of three initial fall directions (forward, sideways, or backward) and three knee positions at the time of hip impact (the impacting-side knee contacted the other knee ("knee together") or the mat ("knee on mat"), or neither the other knee nor the mat was contacted by the impacting-side knee ("free knee"). Falls involved "backward initial fall direction" or "free knee" were defined as "injurious falls" as suggested from previous studies. Nine features were extracted from sEMG signals of four hip muscles during a fall, including integral of absolute value (IAV), Wilson amplitude (WAMP), zero crossing (ZC), number of turns (NT), mean of amplitude (MA), root mean square (RMS), average amplitude change (AAC), difference absolute standard deviation value (DASDV). The decision tree and support vector machine (SVM) were used to classify the injurious falls. Results: For the initial fall direction, accuracy of the best model (SVM with a DASDV) was 48%. For the knee position, accuracy of the best model (SVM with an AAC) was 49%. Furthermore, there was no model that has sensitivity and specificity of 80% or greater. Conclusion: Our results suggest that the classification model built upon the sEMG features of the four hip muscles are not effective to classify injurious falls. Future studies should consider other data mining techniques with different muscles.

Analysis of the Residual Stress due to Cold Expansion and Stress Intensity Factor in CT Specimen Using Finite Element Method (유한요소법을 이용한 CT 시편의 홀확장 잔류응력 및 응력확대계수 해석)

  • Jang, Jae-Soon;Yang, Won-Ho;Kim, Cheol;Ko, Myung-Hoon;Cho, Myoung-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.890-895
    • /
    • 2002
  • Cold expansion method is retarded of crack initiation due to the compressive residual stress developed on the hole surface. Previous research has just been study about residual stress distribution in the hole surrounding. But, The purpose of this study was to improve the understanding of the residual stress effect in hole surrounding as crack growth from another hole. In this paper, it is shown that residual stress is redistributed due to the application of cold expansion process for CT specimen using finite element method. It is further shown that tensile stress increases in proportion to cold expansion ratio in the vicinity of crack. It is thought that stress intensity factor increases with cold expansion ratio.

Finite-Time Sliding Mode Controller Design for Formation Control of Multi-Agent Mobile Robots (다중 에이전트 모바일 로봇 대형제어를 위한 유한시간 슬라이딩 모드 제어기 설계)

  • Park, Dong-Ju;Moon, Jeong-Whan;Han, Seong-Ik
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • In this paper, we present a finite-time sliding mode control (FSMC) with an integral finite-time sliding surface for applying the concept of graph theory to a distributed wheeled mobile robot (WMR) system. The kinematic and dynamic property of the WMR system are considered simultaneously to design a finite-time sliding mode controller. Next, consensus and formation control laws for distributed WMR systems are derived by using the graph theory. The kinematic and dynamic controllers are applied simultaneously to compensate the dynamic effect of the WMR system. Compared to the conventional sliding mode control (SMC), fast convergence is assured and the finite-time performance index is derived using extended Lyapunov function with adaptive law to describe the uncertainty. Numerical simulation results of formation control for WMR systems shows the efficacy of the proposed controller.