• 제목/요약/키워드: surface insolation

검색결과 66건 처리시간 0.024초

RTDS를 이용한 단독운전 태양광 발전시스템의 실시간 시뮬레이션 (A Real-Time Simulation Method for Stand-Alone PV Generation Systems using RTDS)

  • 김봉태;이재득;박민원;성기철;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.190-193
    • /
    • 2001
  • In order to verify the efficiency or availability and stability of photovoltaic(PV) generation systems, huge system apparatuses are needed, in general, in which an actual size of solar panel, a type of converter system and some amount of load facilities should be installed in a particular location. It is also hardly possible to compare a Maximum Power Point Tracking (MPPT) control scheme with others under the same weather and load conditions in an actual PV generation system. The only and a possible way to bring above-mentioned problem to be solved is to realize a transient simulation scheme for PV generation systems using real weather conditions such as insolation and surface temperature of solar cell. The authors, in this paper, introduces a novel simulation method, which is based on a real-time digital simulator (RTDS), for PV generation systems under the real weather conditions. Firstly, VI characteristic equation of a solar cell is developed as an empirical formula and reconstructed in the RTDS system, then the real data of weather conditions are interfaced to the analogue inputs of the RTDS. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation scheme in this paper. The results shows that the cost effective verifying for the efficiency or availability and stability of PV generation systems and the comparison research of various control schemes like MPPT under the same real weather conditions are possible.

  • PDF

태양광 발전시스템의 계절별 일사량과 전력량 분석 (Analysis of Irradiation and Power per Each Seasons of Photovoltaic Systems)

  • 김석곤;황준원;이영;최용성;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.43-45
    • /
    • 2009
  • In case of favourable irradiation conditions, the ratio of irradiation to the total irradiation went up and then the irradiation increased in the area with high angle of inclination. The study showed that on a clear day with the irradiation of more than 80$[W/m^2]$, the pattern of alternating current power change in the fixed system was similar with that in the single-axis tracker. On the contrary, in case of unfavourable irradiation conditions, the ratio of diffuse irradiation to the total irradiation went up and then the horizontal irradiation increased. In the demo system, the fixed system, the single-axis tracker and the dual-axis tracker all had low generation power and similar generation pattern with each other. The study showed the generation power varied with the irradiation in the fixed system, while in the single-axis tracker and the dual-axis tracker, the amount of the generation Power variation was much more than the irradiation variation. The demo system was operated from 11:00 AM to 2:00 PM for generating power, during which time, 46[%] to 56[%] of the total generation power was produced. In this study, the generation power was increased by 147[%] in the fixed system, by 136[%] in the single-axis tracker, and by 164[%] in the dual-axis tracker, and the pattern of generation power was similar with the generation power variation in the situation where the irradiation increased by 140[%] in the spring with plenty of insolation. The alternating current power was more sensitive to variation of the irradiation than to that of the surface temperature of a module. The variation of the irradiation had a more positive effect on the generation power than the type of array.

  • PDF

일본에 있어서 산림토목 목제구조물 설계지침에 관한 연구(1) - 목재의 이용과 특성, 조사 및 계획을 중심으로 - (Study on design indicator for wood structure of forest engineering works in Japan(1) - Focus on use and characteristic of wood, investigation and planning -)

  • 전근우;김민식;김윤진;염규진;츠지오 에자키
    • Journal of Forest and Environmental Science
    • /
    • 제22권1호
    • /
    • pp.41-49
    • /
    • 2006
  • 일본에서 2004년도에 발행된 산림토목 목제구조물 시공 매뉴얼에 실려 있는 산림토목 목제구조물 설계지침은 총설, 목재의 이용과 특성, 조사, 계획 및 설계 등으로 구성되어 있으며, 이 논문에서는 총설, 목재의 이용과 특성, 조사 및 계획에 대하여 분석하였다. 분석 결과, 목재의 특성은 목재의 물리 화학적 특성, 환경에의 영향, 심리 생리적인 효과 및 목재의 부후성에 대해 정리되어 있으며, 조사항목은 유수에 의한 영향의 정도, 일사의 정도, 흰개미의 생식 유무, 지표수 및 지하수의 유하 상황, 계류 등에 서식하는 동식물의 상황, 물이용 상황 등이 제시되었다. 또한 계획에서는 목제구조물의 구조와 설치장소, 취급방법, 해당 지역의 목재 간벌재의 이용, 방부처리 등에 대하여 설명되어 있다.

  • PDF

대기온도(大氣溫度)에 따른 아스팔트포장(鋪裝) 내부(內部) 온도변화(溫度變化)와 변형특성(變形特性)에 관(關)한 연구(硏究) (A Study on the Variation of Temperature and the Deformation Characteristics in Asphaltic Concrete Pavement by Air Temperature)

  • 강민수;김수삼;이석근
    • 대한토목학회논문집
    • /
    • 제14권5호
    • /
    • pp.1115-1128
    • /
    • 1994
  • 국내 아스팔트포장의 온도변화 특성을 파악하기 위하여 국내 주요 5개 지역을 선정하여 포장의 내부온도를 측정하였고, 이를 바탕으로 포장체 연수지를 검토함과 동시에 포장체의 표면온도변화를 산정하고 열전도 이론을 이용하여 내부온도를 예측하는 수치모형을 도입 프로그램화함으로서 실측자료와 예측자료를 비교, 검토하고 그 적용성을 검증하였다. 그리고, 아스팔트혼합물의 온도의 영향을 분석하고자 국내에서 현재 생산 중인 아스팔트 재료 즉, 포장용아스팔트 AP-3(AC 85~100)와 AP 5(AC 60~70)를 선정하여 아스팔트물성시험과 Ascon 공시체를 마샬배합설계법에 따라 제작하여 온도에 따른 일압축시험과 간접인장시험의 정적탄성계수시험을 시행함으로서 아스팔트혼합물의 온도에 따른 변형특성을 파악하고자 하였고, 이로부터 온도변화에 따른 포장내부 온도예측 모델을 정립하고 온도에 따른 변형계수 변동을 분석, 대기온도와 변형계수 관계를 도출함으로서 지역에 따른 적정 아스팔트 설정을 위한 기초자료를 제시해 보고자 하였다.

  • PDF

평판형 액체식 집열기 의 각종 변수 가 집열기 의 열성능 에 미치는 영향 (A Study of Parametric Effects on the Thermal Performance of Flat-Plate Liquid-Heating Solar Collectors)

  • 전문헌;윤석범;추교명
    • 대한기계학회논문집
    • /
    • 제8권2호
    • /
    • pp.145-153
    • /
    • 1984
  • 본 연구에서는 먼저 집열기의 열성능에 관한 가장 전형적인 Hottel-Whillier- Bliss의 모델을 사용하여 모의 실험을 수행하였다. 모의 실험에 사용한 집열기의 주 요 변수는 덮개 유리의 수(N), 집열판의 방사율(.epsilon.$_{p}$), 집열판의 흡수율(.alpha.$_{p}$T),집열기 단위 면적당의 유량(G), 집열기 단열재의 $L_{b}$/ $K_{b}$, 집열기 경사각 (S),일사량(I) 등이며 이들 집열기 변수의 대표치(typical values)를 중심으로 각 변 수의 값을 변화시켜서 여기에 따른 집열기 효율 곡선의 변화를 조사하였다. 모의 실 험결과와 비교하고, 모의 실험에 사용한 수학적 모델이 집열기의 열성능을 평가하는 데에 적합한가를 확인하고, 운전중에 인위적으로 그 값을 조절할 수 있는 운전 변수중 특히 유량(G)의 변화에 따른 집열기 효율변화와 최적유량의 범위를 동시에 실험적으로 조사하기 위하여, 액체 가열식 집열기 시험장치의 회로를 보완하여 실제 태양 아래에 서 실험을 수행하였다.

발열 필름을 이용한 제설 기능 PV module & system 제작 및 특성평가 (A Study on the Fabrication and Characteristics of Snow Removal PV Module & System using Heating Film)

  • 박은비;조근영;조성배;김현준;유정재;박지홍
    • Current Photovoltaic Research
    • /
    • 제4권4호
    • /
    • pp.159-163
    • /
    • 2016
  • Piled snow upon PV module interferes with Photoelectric Effect process through photovoltaic directly. As a result of this phenomenon, its generation efficiencies keep decreasing or are stuck at zero power generating status. In addition, PV facilities have been installed on those places such as water surface, roof-top, and other isolated places, dealing with conditions of "Securing high REC weighted value", "Difficulty of securing land" and so forth. Through this study, we are able to actualize the function of heating over PV modules when it snows. We adopted laminating method through heating film and modules, guaranteeing warranty more than for 25 years. Also we are trying remote control systemically, not by hardware control, to run parallel with automatic driving and monitoring system which enable to control operation time, insolation, amount of snowfall automatically. We applied analysis of actual proof to both snow removal PV system and general PV power system, and these led to bear power consumption analysis while snow-removing, and its comparison after finishing the task as "One stone, two birds." In the long run, we could carry out economic analysis against snow removal system, and this helps to verify the most maximized control method for snow removal conditons on a basis of weather information. this study shall let prevent people from negligent accidents, and improve power generation problems as mentioned from the top. Ultimately, we expect to apply this system to heavy snowfall regions in winter season in spite of its limited system installaion in Korean territory, initially.

2013년 8월 6일 한반도에서 발달한 다세포(Multicell) 대류계의 특성 분석 (Characteristic Analysis of Multicell Convective System that Occurred on 6 August 2013 over the Korean Peninsula)

  • 윤지현;민기홍
    • 대기
    • /
    • 제26권2호
    • /
    • pp.321-336
    • /
    • 2016
  • Damages caused by torrential rain occur every year in Korea and summer time convection can cause strong thunderstorms to develop which bring dangerous weather such as torrential rain, gusts, and flash flooding. On 6 August 2013 a sudden torrential rain concentrated over the inland of Southern Korean Peninsula occurred. This was an event characterized as a mesoscale multicellular convection. The purpose of this study is to analyze the conditions of the multicellular convection and the synoptic and mesoscale nature of the system development. To this end, dynamical and thermodynamic analyses of surface and upper-level weather charts, satellite images, soundings, reanalysis data and WRF model simulations are performed. At the beginning stage there was a cool, dry air intrusion in the upper-level of the Korean Peninsula, and a warm humid air flow from the southwest in the lower-level creating atmospheric instability. This produced a single cell cumulonimbus cloud in the vicinity of Baengnyeongdo, and due to baroclinic instability, shear and cyclonic vorticity the cloud further developed into a multicellular convection. The cloud system moved southeast towards Seoul metropolitan area accompanied by lightning, heavy precipitation and strong wind gusts. In addition, atmospheric instability due to daytime insolation caused new convective cells to develop in the upstream part of the Sobaek Mountain which merged with existing multicellular convection creating a larger system. This case was unusual because the system was affected little by the upper-level jet stream which is typical in Korea. The development and propagation of the multicellular convection showed strong mesoscale characteristics and was not governed by large synoptic-scale dynamics. In particular, the system moved southeast crossing the Peninsula diagonally from northwest to southeast and did not follow the upper-level westerly pattern. The analysis result shows that the movement of the system can be determined by the vertical wind shear.

공동주택 단지 배치유형별 PV시스템 최적 설치면적 및 전기부하 기여율 평가 연구 (A Study on the Power Saving Fraction of Site Electrical Load depending on the installation area of PV system in Apartment Complex)

  • 윤종호;박재성;신우철
    • 한국태양에너지학회 논문집
    • /
    • 제28권3호
    • /
    • pp.60-66
    • /
    • 2008
  • This study is to investigate an optimal size and position of PV system for apartment complex through the electrical load matching analysis. The 4 types of arrangements of apartment buildings are considered as follows; ㅡtype, alternative ㅡtype, ㄱtype and ㅁtype. We assume that the studied site is composed of 9 buildings. Firstly, solar access evaluation of roof and facade in apartment buildings was performed with the hourly simulations of total received insolation on each surface considering the shading effect of buildings. Electrical load profile of typical Korean apartments were investigated for the load matching analysis. To calculate an annual total PV output, we used MERIT program which is a hourly based load matching tool developed by ESRD. TRY weather data of Daejeon are applied for this analysis. Result shows that approximately 11% of total electric load of the site can be supplied by the PV system in the case of full installation of PV system at the whole south-face roof area of 9 buildings in this stuided apartment complex. Depending on a various installation option of roof and facade area, the possible ratio of PV supply in total electrical load varies from 9% to 42%. Among the 4 arrangement types, the ㅡtype revealed the best option for the maximum output of PV system.

2014년 7월 31일 대관령에서 발생한 집중호우에 관한 수치모의 연구 (A Numerical Simulation Study of a Heavy Rainfall Event over Daegwallyeong on 31 July 2014)

  • 최승보;이재규
    • 대기
    • /
    • 제26권1호
    • /
    • pp.159-183
    • /
    • 2016
  • On 31 July 2014, there was a localized torrential rainfall ($58.5mm\;hr^{-1}$) caused by a strong convective cell with thunder showers over Daegwallyeong. In the surface synoptic chart, a typhoon was positioned in the East China Sea and the subtropical high was expanded to the Korean peninsula. A WRF (Weather Research and Forecasting) numerical simulation with a resolution of 1 km was performed for a detailed analysis. The simulation result showed a similar pattern in a reflectivity distribution particularly over the Gangwon-do region, compared with the radar reflectivity. According to the results of the WRF simulation, the process and mechanism of the localized heavy rainfall over Daegwallyeong are as follows: (1) a convective instability over the middle part of the Korean peninsula was enhanced due to the low level advection of warm and humid air from the North Pacific high. (2) There was easterly flow from the coast to the mountainous regions around Daegwallyeong, which was generated by the differential heating of the insolation among Daegwallyeong and the Yeongdong coastal plain, and nearby coastal waters. (3) In addition, westerly flow from the western part of Daegwallyeong caused a strong convergence in this region, generating a strong upward motion combined by an orographic effect. (4) This brought about a new convective cell over Daegwallyeong. And this cell was more developed by the outflow from another thunderstorm cell to the south, and finally these two cells were merged to develop as a strong convective cell with thunder showers, leading to the record breaking maximum rainfall per hour ($58.5mm\;hr^{-1}$) in July.

A Case Study of Tsukuba Tornado in Japan on 6 May 2012

  • Choo, Seonhee;Min, Ki-Hong;Kim, Kyung-Eak;Lee, Gyuwon
    • 한국지구과학회지
    • /
    • 제39권5호
    • /
    • pp.403-418
    • /
    • 2018
  • This study conducted synoptic and mesoscale analyses to understand the cause of Japan Tsukuba tornado development, which occurred at 0340 UTC 6 May 2012. Prior to the tornado occurrence, there was a circular jet stream over Japan, and the surface was moist due to overnight precipitation. The circular jet stream brought cold and dry air to the upper-level atmosphere which let strong solar radiation heat the ground with clearing of sky cover. A tornadic supercell developed in the area of potentially unstable atmosphere. Sounding data at Tateno showed a capping inversion at 900 hPa at 0000 UTC 6 May. Strong insolation in early morning hours and removal of the inversion instigated vigorous updraft with rotation due to vertical shear in the upper-level atmosphere. This caused multiple tornadoes to occur from 0220 to 0340 UTC 6 May 2012. When comparing Tateno's climatological temperature and dew-point temperature profile on the day of event, the mid-level atmosphere was moister than typical sounding in the region. This study showed that tornado development in Tsukuba was caused by a combination of (a) topography and potential vorticity anomaly, which increased vorticity over the Kanto Plain; (b) vertical shear, which produced horizontal vortex line; and c) thermal instability, which triggered supercell and tilted the vortex line in the vertical.