• 제목/요약/키워드: surface immobilization

검색결과 251건 처리시간 0.022초

유기고분자로 표면 개질 된 입상활성탄을 이용한 프러시안 블루 고정화 및 Cs+ 제거 (Covalent organic polymer grafted on granular activated carbon surface to immobilize Prussian blue for Cs+ removal)

  • 서영교;오대민;황유훈
    • 상하수도학회지
    • /
    • 제32권5호
    • /
    • pp.399-409
    • /
    • 2018
  • Prussian blue is known as a superior material for selective adsorption of radioactive cesium ions; however, the separation of Prussian blue from aqueous suspension, due to particle size of around several tens of nanometers, is a hurdle that must be overcome. Therefore, this study aims to develop granule type adsorbent material containing Prussian blue in order to selectively adsorb and remove radioactive cesium in water. The surface of granular activated carbon was grafted using a covalent organic polymer (COP-19) in order to enhance Prussian blue immobilization. To maximize the degree of immobilization and minimize subsequent detachment of Prussian blue, several immobilization pathways were evaluated. As a result, the highest cesium adsorption performance was achieved when Prussian blue was synthesized in-situ without solid-liquid separation step during synthesis. The sample obtained under optimal conditions was further analyzed by scanning electron microscope-energy dispersive spectrometry, and it was confirmed that Prussian blue, which is about 9.7% of the total weight, was fixed on the surface of the activated carbon; this level of fixing represented a two-fold improvement compared to before COP-19 modification. In addition, an elution test was carried out to evaluate the stability of Prussian blue. Leaching of Prussian blue and cesium decreased by 1/2 and 1/3, respectively, compared to those levels before modification, showing increased stability due to COP-19 grafting. The Prussian blue based adsorbent material developed in this study is expected to be useful as a decontamination material to mitigate the release of radioactive materials.

하이드록시아파타이트 표면에서의 플럭토즈 전이효소의 결합 특성 (The Binding Properties of Fructosyltransferase on the Surface of Hydroxyapatite)

  • 장기효;박영민
    • 치위생과학회지
    • /
    • 제2권2호
    • /
    • pp.121-124
    • /
    • 2002
  • 본 연구에서는 구강미생물에서 발견되는 FTF 효소의 hydroxyapatite에 대한 친화도와 상호간의 결합에 영향을 주는 요소들을 비교하였으며, hydroxyapatite에 결합된 FTF 효소의 효소활성은 매우 안정적으로 높은 효소활성을 보였다. 결과를 요약하면 다음과 같다. 1. FTF는 치아를 대신하여 사용한 hydroxyapatite의 표면상태와 표면적에 영향을 받는 것으로 나타났다. 2. Hydroxyapatite에 결합된 FTF는 높은 플락탄 생성능을 보여, 비결합 FTF와 비교시, 약 70%의 효소활성을 나타내었다. 3. 결합된 FTF는 비결합 FTF와 비교시, 단백질분해효소의 분해작용에 대한 높은 저항성을 보여, hydroxyapatite에 결합된 효소에서는 3차원적인 구조적 변화가 나타나는 것으로 판단된다.

  • PDF

Immunosensor for Detection of Escherichia coli O157:H7 Using Imaging Ellipsometry

  • Bae Young-Min;Park Kwang-Won;Oh Byung-Keun;Choi Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1169-1173
    • /
    • 2006
  • Imaging ellipsometry (IE) for detection of binding of Escherichia coli O157:H7 (E. coli O157:H7) to an immunosensor is reported. A protein G layer, chemically bound to a self-assembled layer of 11-mercaptoundecanoic acid (11-MUA), was adopted for immobilization of monoclonal antibody against E. coli O157:H7 (Mab). The immobilization of antibody was investigated using surface plasmon resonance. To fabricate antibody spots on a gold surface, protein G solution was spotted onto the gold surface modified with an 11-MUA layer, followed by immobilizing Mab on the protein G spot. Ellipsometric images of the protein G spot, the Mab spot, and Mab spots with binding of E. coli O157:H7 in various concentrations were acquired using the IE system. The change of mean optical intensity of the Mab spots in the ellipsometric images indicated that the lowest detection limit was $10^3$CFU/ml for E. coli O157:H7. Thus, IE can be applied to an immunosensor for detection of E. coli O157:H7 as a detection method with the advantages of allowing label-free detection, high sensitivity, and operational simplicity.

Preparation of Ag, Pd, and Pt50-Ru50 colloids prepared by γ-irradiation and electron beam and electrochemical immobilization on gold surface

  • Kim, Kyung-Hee;Seo, Kang-Deuk;Oh, Seong-Dae;Choi, Seong-Ho;Oh, Sang-Hyub;Woo, Jin-Chun;Gopalan, A.;Lee, Kwang-Pill
    • 분석과학
    • /
    • 제19권4호
    • /
    • pp.333-341
    • /
    • 2006
  • PVP-protected Ag, Pd and $Pt_{50}-Ru_{50}$ colloids were prepared independently by using ${\gamma}$-irradiation and electron beam (EB) at ambient temperature. UV-visible spectra of these colloids show the characteristic bands of surface resonance and give evidence for the formation of nanoparticles. Transmission electron microscopy (TEM) experiments were used to know the morphology of nanoparticles prepared by ${\gamma}$-irradiation and EB. The size of Ag, Pd, and $Pt_{50}-Ru_{50}$ nanoparticles prepared by ${\gamma}$-irradiation was ca. 13, 2-3, 15 nm, respectively. While, the size of Ag, Pd, and $Pt_{50}-Ru_{50}$ nanoparticles prepared by EB was ca. 10, 6, and 1-3 nm, respectively. Cyclic voltamograms (CV) were recorded for the Au electrodes immobilized with these nanoparticles. CVs indicated the modifications in the surface as a result of immobilization.

Surface Modification and Fibrovascular Ingrowth of Porous Polyethylene Anophthalmic Implants

  • Yang, Hee-Seok;Park, Kwi-Deok;Son, Jun-Sik;Kim, Jae-Jin;Han, Dong-Keun;Park, Byung-Woo;Baek, Se-Hyun
    • Macromolecular Research
    • /
    • 제15권3호
    • /
    • pp.256-262
    • /
    • 2007
  • The purpose of this study was to determine the effect of surface modification on the fibrovascular ingrowth into porous polyethylene (PE) spheres ($Medpor^{(R)}$), which are used as an anophthalmic socket implant material. To make the inert, hydrophobic PE surface hydrophilic, nonporous PE film and porous PE spheres were subjected to plasma treatment and in situ acrylic acid (AA) grafting followed by the immobilization of arginine-glycine-aspartic acid (RGD) peptide. The surface-modified PE was evaluated by performing surface analyses and tested for fibroblast adhesion and proliferation in vitro. In addition, the porous PE implants were inserted for up to 3 weeks in the abdominal area of rabbits and, after their retrieval, the level of fibrovascular ingrowth within the implants was assessed in vivo. As compared to the unmodified PE control, a significant increase in the hydrophilicity of both the AA-grafted (PE-g-PAA) and RGD-immobilized PE (PE-g-RGD) was observed by the measurement of the water contact angle. The cell adhesion at 72 h was most notable in the PE-g-RGD, followed by the PE-g-PAA and PE control. There was no significant difference between the two modified surfaces. When the cross-sectional area of tissue ingrowth in vivo was evaluated, the area of fibrovascularization was the largest with PE-g-RGD. The results of immunostaining of CD31, which is indicative of the degree of vascularization, showed that the RGD-immobilized surface could elicit more widespread fibrovascularization within the porous PE implants. This work demonstrates that the present surface modifications, viz. hydrophilic AA grafting and RGD peptide immobilization, can be very effective in inducing fibrovascular ingrowth into porous PE implants.

글루타알데하이드에 의한 키토산 부직포에 트립신 고정화 (Immobilization of Trypsin on Chitosan Nonwoven Using Glutaraldehyde)

  • 김정수;이소희;송화순
    • 한국의류학회지
    • /
    • 제37권7호
    • /
    • pp.852-863
    • /
    • 2013
  • We investigate the immobilization of trypsin on chitosan nonwoven using glutaraldehyde (GA). The conditions for trypsin on chitosan nonwoven and GA cross-linking were optimized depending on different conditions. The order of GA cross-linking was determined by the activity of immobilized trypsin. The characteristics of chitosan nonwoven were examined by Fourier-transform infrared (FT-IR) and surface morphology analyses (SEM). Results showed that the optimal treatment conditions for trypsin on chitosan nonwoven were as follows: pH 8.5; temperature $37^{\circ}C$; trypsin concentration 15% (o.w.f); and treatment time 60 min. Those for GA cross-linking were: pH 10.0; GA concentration 3% (v/v); and treatment time 120 min. FT-IR analysis showed that GA was cross-linked on chitosan nonwoven. The SEM analysis also showed that trypsin was immobilized on chitosan nonwoven.

살모넬라균 검출을 위한 임피던스 바이오센서의 항체 고정화 방법 평가 (Evaluation of Antibody Immobilization Methods for Detection of Salmonella using Impedimetric Biosensor)

  • 김기영;문지혜;엄애선;양길모;모창연;강석원;조한근
    • Journal of Biosystems Engineering
    • /
    • 제34권4호
    • /
    • pp.254-259
    • /
    • 2009
  • Conventional methods for pathogen detection and identification are labor-intensive and take several days to complete. Recently developed biosensors have shown potential for the rapid detection of foodborne pathogens. In this study, an impedimetric biosensor was developed for rapid detection of Salmonella typhimurium. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on either avidin-biotin binding or self assembled monolayer (SAM) on the surface of the IME to form an active sensing layer. To evaluate effect of antibody immobilization methods on sensitivity of the sensor, detection limit of the biosensor was analyzed with Salmonella samples innoculated in phosphate buffered saline (PBS) or food extract. The impedimetric biosensor based on SAM immobilization method produced better detection limit. The biosensor could detect 107 CFU/mL of Salmonella in pork meat extract. This method may provide a simple, rapid, and sensitive method to detect foodborne pathogens.

Effect of Glutaraldehyde Treatment on Stability of Permeabilized Ochrobactrum anthropi SY509 in Nitrate Removal

  • Park, Young-Tae;Park, Jae-Yeon;Park, Kyung-Moon;Choi, Suk-Soon;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권11호
    • /
    • pp.1803-1808
    • /
    • 2008
  • For practical application, the stability of permeabilized Ochrobactrum anthropi SY509 needs to be increased, as its half-life of enzymatic denitrification is only 90 days. As the cells become viable after permeabilization treatment, this can cause decreased activity in a long-term operation and induce breakage of the immobilization matrix. However, the organic solvent concentration causing zero cell viability was 50%, which is too high for industrial application. Thus, whole-cell immobilization using glutaraldehyde was performed, and 0.1% (v/v) glutaraldehyde was determined as the optimum concentration to maintain activity and increase the half-life. It was also found that 0.1% (v/v) glutaraldehyde reacted with 41.9% of the total amine residues on the surface of the cells during the treatment. As a result, the half-life of the permeabilized cells was increased from 90 to 210 days by glutaraldehyde treatment after permeabilization, and no cell viability was detected.

A Temperature-Controllable Microelectrode and Its Application to Protein Immobilization

  • Lee, Dae-Sik;Choi, Hyoung-Gil;Chung, Kwang-Hyo;Lee, Bun-Yeoul;Pyo, Hyeon-Bong;Yoon, Hyun-C.
    • ETRI Journal
    • /
    • 제29권5호
    • /
    • pp.667-669
    • /
    • 2007
  • This letter presents a smart integrated microfluidic device which can be applied to actively immobilize proteins on demand. The active component in the device is a temperature-controllable microelectrode array with a smart polymer film, poly(N-isopropylacrylamide) (PNIPAAm) which can be thermally switched between hydrophilic and hydrophobic states. It is integrated into a micro hot diaphragm having an integrated micro heater and temperature sensors on a 2-micrometer-thick silicon oxide/silicon nitride/silicon oxide (O/N/O) template. Only 36 mW is required to heat the large template area of 2 mm${\times}$16 mm to $40^{\circ}C$ within 1 second. To relay the stimulus-response activity to the microelectrode surface, the interface is modified with a smart polymer. For a model biomolecular affinity test, an anti-6-(2, 4-dinitrophenyl) aminohexanoic acid (DNP) antibody protein immobilization on the microelectrodes is demonstrated by fluorescence patterns.

  • PDF

Volatile Organic Compound Specific Detection by Electrochemical Signals Using a Cell-Based Sensor

  • Chung, Sang-Gwi;Kim, Jo-Chun;Park, Chong-Ho;Ahn, Woong-Shick;Kim, Yong-Wan;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.145-152
    • /
    • 2008
  • A cell-based in vitro exposure system was developed to determine whether oxidative stress plays a role in the cytotoxic effects of volatile organic compounds (VOCs) such as benzene, toluene, xylene, and chlorobenzene, using human epithelial HeLa cells. Thin films based on cysteine-terminated synthetic oligopeptides were fabricated for immobilization of the HeLa cells on a gold (Au) substrate. In addition, an immobilized cell-based sensor was applied to the electrochemical detection of the VOCs. Layer formation and immobilization of the cells were investigated with surface plasmon resonance (SPR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The adhered living cells were exposed to VOCs; this caused a change in the SPR angle and the VOC-specific electrochemical signal. In addition, VOC toxicity was found to correlate with the degree of nitric oxide (NO) generation and EIS. The primary reason for the marked increase in impedance was the change of aqueous electrolyte composition as a result of cell responses. The p53 and NF-${\kappa}B $ downregulation were closely related to the magnitude of growth inhibition associated with increasing concentrations of each VOC. Therefore, the proposed cell immobilization method, using a self-assembly technique and VOC-specific electrochemical signals, can be applied to construct a cell microarray for onsite VOC monitoring.