DOI QR코드

DOI QR Code

Immobilization of Trypsin on Chitosan Nonwoven Using Glutaraldehyde

글루타알데하이드에 의한 키토산 부직포에 트립신 고정화

  • Kim, Jung Soo (Dept. of Clothing & Textiles, Sookmyung Women's University) ;
  • Lee, So Hee (Research Institute of Health and Living Science, Sookmyung Women's University) ;
  • Song, Wha Soon (Dept. of Clothing & Textiles, Sookmyung Women's University)
  • 김정수 (숙명여자대학교 의류학과) ;
  • 이소희 (숙명여자대학교 건강.생활과학연구소) ;
  • 송화순 (숙명여자대학교 의류학과)
  • Received : 2013.02.13
  • Accepted : 2013.03.23
  • Published : 2013.10.31

Abstract

We investigate the immobilization of trypsin on chitosan nonwoven using glutaraldehyde (GA). The conditions for trypsin on chitosan nonwoven and GA cross-linking were optimized depending on different conditions. The order of GA cross-linking was determined by the activity of immobilized trypsin. The characteristics of chitosan nonwoven were examined by Fourier-transform infrared (FT-IR) and surface morphology analyses (SEM). Results showed that the optimal treatment conditions for trypsin on chitosan nonwoven were as follows: pH 8.5; temperature $37^{\circ}C$; trypsin concentration 15% (o.w.f); and treatment time 60 min. Those for GA cross-linking were: pH 10.0; GA concentration 3% (v/v); and treatment time 120 min. FT-IR analysis showed that GA was cross-linked on chitosan nonwoven. The SEM analysis also showed that trypsin was immobilized on chitosan nonwoven.

Keywords

References

  1. Albayrak, N., & Yang, S. T. (2002). Immobilization of Aspergillus oryzae $\beta$-galactosidase on tosylated cotton cloth. Enzyme and Microbial Technology, 31(4), 371-383. https://doi.org/10.1016/S0141-0229(02)00115-1
  2. Ann, Y. G. (1993). 효소화학 [Chemistry of enzyme]. Paju: Cheongmoongak.
  3. Betancor, L., Lopez-Gallego, F., Alonso-Morales, N., Dellamora, G., Mateo, C., Fernandez-Lafuente, R., & Guisan, J. M. (2007). Glutaraldehyde in protein immobilization. In J. M. Guisan (Ed.), Immobilization of enzymes and cells (2nd ed., pp. 57-64). New Jersey: Humana Press Inc.
  4. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Chang, J., Park, I. H., Lee, Y. S., Chung, S. Y., Fang, S. J., Chandra, M. S., & Choi, Y. L. (2010). Immobilization of $\beta$-glucosidase from Exiguobacterium sp. DAU5 on chitosan bead for improved enzymatic properties. Journal of Life Science, 20(11), 1589-1594. doi:10.5352/JLS.2010.20.11.1589
  6. Chen, B., Yin, C., Cheng, Y., Li, W., Cao, Z., & Tan, T. (2012). Using silk woven fabric as support for lipase immobilization: The effect of surface hydrophilicity/hydrophobicity on enzymatic activity and stability. Biomass and Bioenergy, 39, 59-66. doi:10.1016/j.biombioe.2010.08.033
  7. Dartiguenave, C., Hamad, H., & Waldron, K. C. (2010). Immobilization of trypsin onto 1,4-diisothiocyanatobenzeneactivated porous glass for microreactor-based peptide mapping by capillary electrophoresis: Effect of calcium ions on the immobilized procedure. Analytica Chimica Acta, 663(2), 198-205. doi:10.1016/j.aca.2010.01.042
  8. Dincer, A., Becerik, S., & Aydemir, T. (2012). Immobilization of tyrosinase on chitosan-clay composite beads. International Journal of Biological Macromolecules, 50(3), 815-820. doi:10.1016/j.ijbiomac.2011.11.020
  9. Feng, X., Patterson, D. A., Balaban, M., & Emanuelsson, E. A. C. (2013). Enabling the utilization of wool as an enzyme support: Enhancing the activity and stability of lipase immobilized onto woolen cloth. Colloids and Surfaces B: Biointerfaces, 102, 526-533. doi:10.1016/j.colsurfb.2012.08.037
  10. Jang, D. H., Seong, G. H., & Lee, E. K. (2006). Comparison of enzymatic activity and cleavage characteristics of trypsin immobilized by covalent conjugation and affinity interaction. Korean Journal of Biotechnology and Bioprocess Engineering, 21(4), 279-285.
  11. Joung, D. H. (2008). 효소학개론 [Introduction of enzymology]. Seoul: Daekwang.
  12. Juang, R. S., Wu, F. C., & Tseng, R. L. (2002). Use of chemically modified chitosan beads for sorption and enzyme immobilization. Advances in Environmental Research, 6 (2), 171-177. https://doi.org/10.1016/S1093-0191(00)00078-2
  13. Kang, H. K., Lee, D. E., Won, J. W., Park, K. M., Choi, S. J., & Chang, P. S. (2011). Production of bio-effective lipids and emulsifiers using immobilized lipase for $CO_2$ savings. Journal of Food Hygiene and Safety, 6(3), 5-10.
  14. Kildeeva, N. R., Perminov, P. A., Vladimirov, L. V., Novikov, V. V., & Mikhailov, S. N. (2009). About mechanism of chitosan cross-linking with glutaraldehyde. Russian Journal of Bioorganic Chemistry, 35(3), 360-369. doi:10.1134/S106816200903011X
  15. Kim, Y. J. (2010). Medical textile material development trends. Dyeing and Finishing, 5, 1-10.
  16. Krajewska, B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme and Microbial Technology, 35(2-3), 126-139. doi:10.1016/j.enzmictec.2003.12.013
  17. Kwon, S., Ryu, W. R., & Cho, M. H. (2002). Continuous degradation of azo dye by immobilized laccase. Korean Journal of Biotechnology and Bioprocess Engineering, 17(2), 189-194.
  18. Lee, S. H., & Song, W. S. (2010). Surface modification of polyester fabrics by enzyme treatment. Fibers and Polymers, 11(1), 54-59. doi:10.1007/s12221-010-0054-4
  19. Lee, S. P., Kim, S. W., Sohn, E. S., & Kang, J. S. (2003). Technology trend analysis of chitosan. Journal of Chitin and Chitosan, 8(4), 193-201.
  20. Li, F. Y., Xing, Y. J., & Ding, X. (2007). Immobilization of papain on cotton fabric by sol-gel method. Enzyme and Microbial Technology, 40(7), 1692-1697. doi:10.1016/j.enzmictec. 2006.09.007
  21. Li, W., Chen, B., & Tan, T. (2011). Comparative study of the properties of lipase immobilized on nonwoven fabric membranes by six methods. Process Biochemistry, 46(6), 1358-1365. doi:10.1016/j.procbio.2011.03.005
  22. Lopez-Gallego, F., Betancor, L., Mateo, C., Hidalgo, A., Alonso-Morales, N., Dellamora-Ortiz, G., Fuisan, J. M., & Fernandez- Lafuente, R. (2005). Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. Journal of Biotechnology, 119(1), 70-75. doi:10.1016/j.jbiotec.2005.05.021
  23. Manrich, A., Galvao, C. M. A., Jesus, C. D. F., Giordano, R. C., & Giordano, R. L. C. (2008). Immobilization of trypsin on chitosan gels: Use of different activation protocols and comparison with other supports. International Journal of Biological Macromolecules, 43(1), 54-61. doi:10.1016/j.ijbiomac. 2007.11.007
  24. Migneault, I., Dartiguenave, C., Bertrand, M. J., & Waldron, K. C. (2004). Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques, 37(5), 790-802.
  25. Min, K. S. (2010). Enzyme immobilization and its application using carbon-based nanomaterials. News & Information for Chemical Engineers, 28(4), 465-469.
  26. Mohamed, S. A., Aly, A. S., Mohamed, T. M., & Salah, H. A. (2008). Immobilization of horseradish peroxidase on nonwoven polyester fabric coated with chitosan. Applied Biochemistry and Biotechnology, 144(2), 169-179. doi:10.1007/s12010-007-8026-x
  27. Monier, M., & El-Sokkary, A. M. A. (2012). Modification and characterization of cellulosic cotton fibers for efficient immobilization of urease. International Journal of Biological Macromolecules, 51(1-2), 18-24. doi:10.1016/j.ijbio-mac.2012.04.019
  28. Monsan, P. (1978). Optimization of glutaraldehyde activation of a support for enzyme immobilization. Journal of Molecular Catalysis, 3(5), 371-384. https://doi.org/10.1016/0304-5102(78)80026-1
  29. Monteiro, F. M. F., Silva, G. M. M., Silva, J. B. R., Porto, C. S., Carvalho Jr., L. B., Lima Filho, J. L., Anjos Carneiro-Leao, A. M., Gracas Carneiro-da-Cunha, M., & Porto, A. L. F. (2007). Immobilization of trypsin on polysaccharide film from Anacardium occidentale L. and its application as cutaneous dressing. Process Biochemistry, 42(5), 884-888. doi:10.1016/j.procbio.2007.01.006
  30. Nikolic, T., Kostic, M., Praskalo, J., Pejic, B., Petronijevic, Z., & Skundric, P. (2010). Sodium periodate oxidized cotton yarn as carrier for immobilization of trypsin. Carbohydrate Polymers, 82(3), 976-981. doi:10.1016/j.carbpol.2010.06.028
  31. Nikonorov, V. V., Perminov, P. A., & Kil'deeva, N. R. (2006). Crosslinking in solutions of chitosan in the presence of a crosslinking reagent for production of fibre biocatalysts. Fibre Chemistry, 38(2), 95-97. https://doi.org/10.1007/s10692-006-0047-7
  32. Orrego, C. E., Salgado, N., Valencia, J. S., Giraldo, G. I., Giraldo, O. H., & Cardona, C. A. (2010). Novel chitosan membranes as support for lipase immobilization: Characterization aspects. Carbohydrate Polymers, 79(1), 9-16. doi:10.1016/j.carbpol.2009.06.015
  33. Pazarlioglu, N. K., Sariisik, M., & Telefoncu, A. (2005). Treating denim fabrics with immobilized commercial cellulases. Process Biochemistry, 40(2), 767-771. doi:10.1016/j.procbio.2004.02.003
  34. Peng, G., Zhao, C., Liu, B., Ye, F., & Jiang, H. (2012). Immobilized trypsin onto chitosan modified monodisperse microspheres: A different way for improving carrier's surface biocompatibility. Applied Surface Science, 258(15), 5543- 5552. doi:10.1016/j.apsusc.2012.01.071
  35. Purcena, L. L. A., Caramori, S. S., Mitidieri, S., & Fernandes, K. F. (2009). The immobilization of trypsin onto polyaniline for protein digestion. Material Science and Engineering C, 29(4), 1077-1081. doi:10.1016/j.msec.2008.09.014
  36. Romdhane, I. B., Romdhane, Z. B., Gargouri, A., & Belghith, H. (2011). Esterification activity and stability of Talaromces thermophilus lipase immobilized onto chitosan. Journal of Molecular Catalysis B: Enzymatic, 68(3-4), 230-239. doi:10.1016/j.molcatb.2010.11.010
  37. Silva, C., Silva, C. J., Zille, A., Guebitz, G. M., & Cavaco-Paulo, A. (2007). Laccase immobilization on enzymatically functionalized polyamide 6,6 fibers. Enzyme and Microbial Technology, 41(6-7), 867-875. doi:10.1016/j.enzmictec.2007.07.010
  38. Silva, J. A., Macedo, G. P., Rodrigues, D. S., Giordano, R. L. C., & Goncalves, L. R. B. (2012). Immobilization of Candida antarctica lipase B by covalent attachment on chitosan- based hydrogels using different support activation strategies. Biochemical Engineering Journal, 60(15), 16-24. doi:10.1016/j.bej.2011.09.011
  39. Soleimani, M., Khani, A., & Najafzadeh, K. (2012). α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. Journal of Molecular Catalysis B: Enzymatic, 74(1-2), 1-5. doi: 10.1016/j.molcatb.2011.07.011
  40. Walt, D. R., & Agayn, V. I. (1994). The chemistry of enzyme and protein immobilization with glutaraldehyde. Trends in Analytical Chemistry, 13(10), 425-430. https://doi.org/10.1016/0165-9936(94)85023-2
  41. Xi, F., Wu, J., Jia, Z., & Lin, X. (2005). Preparation and characterization of trypsin immobilized on silica gel supported macroporous chitosan bead. Process Biochemistry, 40(8), 2833-2840. doi:10.1016/j.procbio.2004.12.013
  42. Zelenetskii, A. N., Akopova, T. A., Kildeeva, N. R., Vikhoreva, G. A., Obolonkova, E. S., & Zharov, A. A. (2003). Immobilization of trypsin on polysaccharides upon intense mechanical treatment. Russian Chemical Bulletin, 52(9), 2073-2077. https://doi.org/10.1023/B:RUCB.0000009655.16601.96

Cited by

  1. Development of an enzyme-immobilized support using a polyester woven fabric vol.87, pp.1, 2017, https://doi.org/10.1177/0040517515624874
  2. Covalent immobilization of enzyme on aminated woven poly (lactic acid) via ammonia plasma: evaluation of the optimum immobilization conditions vol.87, pp.10, 2017, https://doi.org/10.1177/0040517516648514