• Title/Summary/Keyword: surface hydroxyls

Search Result 10, Processing Time 0.022 seconds

Quantum Chemical Calculations of Silica Hydroxyls as Acid Site (실리카 수산기의 산성에 관한 양자화학적 해석)

  • Kim, Myung Chul
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.262-266
    • /
    • 1997
  • The CNDO/2 calculations have been applied on cluster models for the representative hydroxyls on silica surface to get Wiberg bond orders, total energies, LUMO energies, dipole moments, and formal charge densities. The Br${\ddot{o}}$nsted acidities of suggested models for the hydroxyls were explained in terms of Wiberg bond orders. The calculated bond orders of cluster models have been changed remarkably according to the hydrogen bond. However the Lewis acidities of terminal hydroxyls on silica surface were not related to the structure of hydroxyls.

  • PDF

Quantum Chemical Calculations of Surface Hydroxyl Groups as Acid Site (Faujasite 표면 수산기의 산성에 관한 양자화학적 해석)

  • Kim, Myung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.361-363
    • /
    • 1998
  • The CNDO/2 calculations have been applied on cluster models for the representative hydroxyls on faujasite surface to get total energies, dipole moments, Wiberg bond orders and formal charge densities. Quantum chemical calculations indicate that the acid strength of surface hydroxyls of faujasite depends on the geometry of hydroxyls and the Si/Al ratios of framework. The $Br{\ddot{o}}nsted$ acid strength of bridging hydroxyl is higher than that of isolated hydroxyls. The stabilities of cluster models increased with increase of the Si/Al ratios.

  • PDF

A Molecular Dynamics Simulation Study of Hydroxyls in Dioctahedral Phyllosilicates (분자동역학 시뮬레이션을 이용한 이팔면체 점토광물 수산기 연구)

  • Son, Sangbo;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.209-220
    • /
    • 2016
  • Clay minerals are a major player to determine geochemical cycles of trace metals and carbon in the critical zone which covers the atmosphere down to groundwater aquifers. Molecular dynamics (MD) simulations can examine the Earth materials at an atomic level and, therefore, provide detailed fundamental-level insights related to physicochemical properties of clay minerals. In the current study, we have applied classical MD simulations with clayFF force field to dioctahedral clay minerals (i.e., gibbsite, kaolinite, and pyrophyllite) to analyze and compare structural parameters (lattice parameter, atomic pair distance) with experiments. We further calculated vibrational power spectra for the hydroxyls of the minerals by using the MD simulations results. The MD simulations predicted lattice parameters and interatomic distances respectively deviated less than 0.1~3.7% and 5% from the experimental results. The stretching vibrational wavenumber of the hydroxyl groups were calculated $200-300cm^{-1}$ higher than experiment. However, the trends in the frequencies among different surface hydroxyl groups of each mineral was consistent with experimental results. The angle formed by the surface hydroxyl group with the (001) plane and hydrogen bond distances of the surface hydroxyls were consistent with experimental result trends. The inner hydroxyls, however, showed results somewhat deviated from reported data in the literature. These results indicate that molecular dynamics simulations with clayFF can be a useful method in elucidating the roles of surface hydroxyl groups in the adsorption of metal ions to clay minerals.

Surface Characterization of Carbon Fibers as Anode Materials for Li Secondary Batteries

  • Takamura, Tsutomu;Awano, Hidekazu;Ura, Tetsuya;Ikezawa, Yasunari
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.583-590
    • /
    • 1995
  • Pitch-based mesophase carbon fibers prepared at different temperatures were heat-treated at temperatures lower than those of the preparation and the electrochemical Li doping/undoping characteristics were evaluated in relation to the data of IR, mass, etc. Presence of surface hydroxyls were confirmed by FTIR for lower temperature sample which showed poor anode characteristics. Upon oxidative heating, removal of surface hydroxyls took place, resulting in a remarkable improvement of the electrode characteristics. At the same time, surface roughening took place, which was confirmed by SEM and double layer capacity measurements. In situ mass spectra obesrved during the heat-treatments showed gas evolution of $H_2O$, CO, $CO_2$, $C_2H_4$, and/or $H_2$ depending on the conditions. These data together with those of weight loss and conductivity provided us a valuable information in regard to the evaluation of the electrochemical characteristics.

  • PDF

Interaction of $HfCl_4$ with Two Hydroxyl's on Si (001) Surface: A First Principles Study ($HfCl_4$와 Si (001) 표면에 결합된 두 개의 수산화기와의 상호작용: 제일원리 연구)

  • Kim, Dae-Hyun;Kim, Dae-Hee;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.55-58
    • /
    • 2009
  • Density functional theory was used to investigate the adsorption and reaction of $HfCl_4$ with two hydroxyls on Si (001)-$2{\times}1$ surface in atomic layer deposition (ALD) process. We prepared a reasonable Si substrate which consisted of six inter-dimer dissociated $H_2O$ molecules and two intra-dimer dissociated $H_2O$ molecules. The $HfCl_4$must react with two hydroxyls to be a bulk-like structure. When $HfCl_4$ was adsorbed on a hydroxyl, there was energy benefit of -0.55 eV. Though there was energy loss for $HfCl_4$ to react with H of hydroxyl, thermal energy of ALD chamber would be enough to pass the energy barriers. There were five reaction pathways for $HfCl_4$ to react with two hydroxyls; inter-dimer, intra-dimer, cross-dimer, inter-row, and cross-row. Inter-row, inter-dimer and intra-dimer were relatively favorable among the five reaction pathways based on the energy difference. The electron densities between O and Hf in these three reactions were higher than the others and they had shorter Hf-O and O-O bond lengths than the other two reaction pathways.

  • PDF

Filler-Elastomer Interactions. 9. Effect of Thermal Treatment on Mechanical Interfacial Characteristics of Silica/Polyurethane Composites (충전제-탄성체 상호작용. 9. 실리카/ 폴리우레탄 복합재료의 기계적 계면특성에 미치는 열처리의 영향)

  • Park, Soo-Jin;Cho, Ki-Sook;Zaborski, M.;Slusarski, L.
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.258-264
    • /
    • 2002
  • In this work, the influence of thermal treatment on surface properties of silicas and mechanical interfacial properties of silicas/polyurethane composites was investigated. The surface properties of thermally treated silicas were studied in the context of Fourier Transform-IR (FT-IR), solid-state 29Si NMR spectroscopy, and contact angle. And the mechanical interfacial properties of the silica/polyurethane composites were evaluated by composite tearing energy (GIIIC). As a result, it was found that the thermally treated silica surfaces became hydrophobic in nature, due to the condensation of surface hydroxyls and the formation of siloxane bonds, resulting in increasing the London dispersive component of surface free energy. From which, the increase of the London dispersive component of the silicas led to an improvement of the dispersion of silicas in a polyurethane matrix, finally resulting in improving the tearing energy (GIIIC) of the silicas/polyurethane composites.

Conformation of L-Ascorbic Acid in Solution 2. L-Ascorbic Acid Anion

  • Mi Suk Kim;Sung Hee Lee;Uoo Tae Chung;Young Kee Kang
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.143-148
    • /
    • 1991
  • In the unhydrated and hydrated states, conformational free energies of L-ascorbic acid anion (AAA) were computed with an empirical potential function and the hydration shell model (a program CONBIO). The conformational energy was minimized from possible starting conformations expressed with five torsion angles of the molecule. The conformational entropy of each low energy conformation in both states was computed using a harmonic approximation. As found in L-ascorbic acid (AA), intramolecular hydrogen bonds (HBs) are proved to be of significant importance in stabilizing the overall conformations of AAA in both states, and give the folded conformations, which are quite different from those in crystal. There are competitions between HBs and hydration around O3 atom of the lactone ring and hydroxyls of the acyclic side chain. Especially, the whole conformation of AAA is strongly dependent on the water-accessibility of O3 atom. Though there is a significant effect of the hydration on conformational surface, the lowest energy conformation of the unhydrated AAA is conserved. The different patterns of HBs and hydration result in the conformations of AAA in both states being different from those of AA. It can be drawn by several feasible conformations obtained in the hydrated state that there exists an ensemble of several conformations in aqueous solution.

Characteristic of Ru Thin Film Deposited by ALD

  • Park, Jingyu;Jeon, Heeyoung;Kim, Hyunjung;Kim, Jinho;Jeon, Hyeongtag
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.78-78
    • /
    • 2013
  • Recently, many platinoid metals like platinum and ruthenium have been used as an electrode of microelectronic devices because of their low resistivity and high work-function. However the material cost of Ru is very expensive and it usually takes long initial nucleation time on SiO2 during chemical deposition. Therefore many researchers have focused on how to enhance the initial growth rate on SiO2 surface. There are two methods to deposit Ru film with atomic layer deposition (ALD); the one is thermal ALD using dilute oxygen gas as a reactant, and the other is plasma enhanced ALD (PEALD) using NH3 plasma as a reactant. Generally, the film roughness of Ru film deposited by PEALD is smoother than that deposited by thermal ALD. However, the plasma is not favorable in the application of high aspect ratio structure. In this study, we used a bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp)2] as a metal organic precursor for both thermal and plasma enhanced ALDs. In order to reduce initial nucleation time, we use several methods such as Ar plasma pre-treatment for PEALD and usage of sacrificial RuO2 under layer for thermal ALD. In case of PEALD, some of surface hydroxyls were removed from SiO2 substrate during the Ar plasma treatment. And relatively high surface nitrogen concentration after first NH3 plasma exposure step in ALD process was observed with in-situ Auger electron spectroscopy (AES). This means that surface amine filled the hydroxyl removed sites by the NH3 plasma. Surface amine played a role as a reduction site but not a nucleation site. Therefore, the precursor reduction was enhanced but the adhesion property was degraded. In case of thermal ALD, a Ru film was deposited from Ru precursors on the surface of RuO2 and the RuO2 film was reduced from RuO2/SiO2 interface to Ru during the deposition. The reduction process was controlled by oxygen partial pressure in ambient. Under high oxygen partial pressure, RuO2 was deposited on RuO2/SiO2, and under medium oxygen partial pressure, RuO2 was partially reduced and oxygen concentration in RuO2 film was decreased. Under low oxygen partial pressure, finally RuO2 was disappeared and about 3% of oxygen was remained. Usually rough surface was observed with longer initial nucleation time. However, the Ru deposited with reduction of RuO2 exhibits smooth surface and was deposited quickly because the sacrificial RuO2 has no initial nucleation time on SiO2 and played a role as a buffer layer between Ru and SiO2.

  • PDF

A Molecular Dynamics Simulation Study of Trioctahedral Clay Minerals (삼팔면체 점토광물에 대한 분자동역학 시뮬레이션 연구)

  • Lee, Jiyeon;Lee, Jin-Yong;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.161-172
    • /
    • 2017
  • Clay minerals play a major role in the geochemical cycles of metals in the Critical Zone, the Earth surface-layer ranging from the groundwater bottom to the tree tops. Atomistic scale research of the very fine particles can help understand the fundamental mechanisms of the important geochemical processes and possibly apply to development of hybrid nanomaterials. Molecular dynamics (MD) simulations can provide atomistic level insights into the crystal structures of clay minerals and the chemical reactivity. Classical MD simulations use a force field which is a parameter set of interatomic pair potentials. The ClayFF force field has been widely used in the MD simulations of dioctahedral clay minerals as the force field was developed mainly based on dioctahedral phyllosilicates. The ClayFF is often used also for trioctahedral mineral simulations, but disagreement exits in selection of the interatomic potential parameters, particularly for Mg atom-types of the octahedral sheet. In this study, MD simulations were performed for trioctahedral clay minerals such as brucite, lizardite, and talc, to test how the two different Mg atom types (i.e., 'mgo' or 'mgh') affect the simulation results. The structural parameters such as lattice parameters and interatomic distances were relatively insensitive to the choice of the parameter, but the vibrational power spectra of hydroxyls were more sensitive to the choice of the parameter particularly for lizardite.

17O Solid-State NMR Study of the Effect of Organic Ligands on Atomic Structure of Amorphous Silica Gel: Implications for Surface Structure of Silica and Its Dehydration Processes in Earth's Crust (유기 리간드와 비정질 실리카겔의 상호 작용에 대한 17O 고상핵자기공명 분광분석 연구: 실리카 표면 구조 및 지각의 탈수반응에 대한 의의)

  • Kim, Hyun Na;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.271-282
    • /
    • 2012
  • We explore the effect of removal of organic ligand on the atomic configurations around oxygen in hydroxyl groups in amorphous silica gel (synthesized through hydrolysis of $SiCl_4$ in diethyl-ether) using high resolution $^{17}O$ solid state NMR spectroscopy. $^1H$ and $^{29}Si$ MAS NMR spectra for amorphous silica gel showed diverse hydrogen environments including water, hydroxyl groups (e.g., hydrogen bonded silanol, isolated silanol), and organic ligands (e.g., alkyl chain) that may interact with surface hydroxyls in the amorphous silica gel, for instance, forming silica-organic ligand complex (e.g., Si-$O{\cdots}R$). These physically and chemically adsorbed organic ligands were partly removed by ultrasonic cleaning under ethanol and distilled water for 1 hour. Whereas $^{17}O$ MAS NMR spectra with short pulse length ($0.175{\mu}s$) at 9.4 T and 14.1 T for as-synthesized amorphous silica gel showed the unresolved peak for Si-O-Si and Si-OH structures, the $^{17}O$ MAS NMR spectra with long pulse length ($2{\mu}s$) showed the additional peak at ~0 ppm. The peak at ~0 ppm may be due to Si-OH structure with very fast relaxation rate as coupled to liquid water molecules or organic ligands on the surface of amorphous silica gel. The observation of the peak at ~0 ppm in $^{17}O$ MAS NMR spectra for amorphous silica gel became more significant as the organic ligands were removed. These results indicate that the organic ligands on the surface of amorphous silica gel interact with oxygen atoms in Si-OH and provide the information about atomic structure of silanol and siloxane in amorphous silica gel. The current results could enhance the understanding of dehydration mechanism of diverse silicates, which is known as atomic scale origins of intermediate depth (approximately, 70~300 km) earthquakes in subduction zone.