Interaction of $HfCl_4$ with Two Hydroxyl's on Si (001) Surface: A First Principles Study

$HfCl_4$와 Si (001) 표면에 결합된 두 개의 수산화기와의 상호작용: 제일원리 연구

  • Kim, Dae-Hyun (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Seo, Hwa-Il (School of Information Technology, Korea University of Technology and Education) ;
  • Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
  • 김대현 (한국기술교육대학교 신소재공학과) ;
  • 김대희 (한국기술교육대학교 신소재공학과) ;
  • 서화일 (한국기술교육대학교 정보기술공학부) ;
  • 김영철 (한국기술교육대학교 신소재공학과)
  • Published : 2009.06.30

Abstract

Density functional theory was used to investigate the adsorption and reaction of $HfCl_4$ with two hydroxyls on Si (001)-$2{\times}1$ surface in atomic layer deposition (ALD) process. We prepared a reasonable Si substrate which consisted of six inter-dimer dissociated $H_2O$ molecules and two intra-dimer dissociated $H_2O$ molecules. The $HfCl_4$must react with two hydroxyls to be a bulk-like structure. When $HfCl_4$ was adsorbed on a hydroxyl, there was energy benefit of -0.55 eV. Though there was energy loss for $HfCl_4$ to react with H of hydroxyl, thermal energy of ALD chamber would be enough to pass the energy barriers. There were five reaction pathways for $HfCl_4$ to react with two hydroxyls; inter-dimer, intra-dimer, cross-dimer, inter-row, and cross-row. Inter-row, inter-dimer and intra-dimer were relatively favorable among the five reaction pathways based on the energy difference. The electron densities between O and Hf in these three reactions were higher than the others and they had shorter Hf-O and O-O bond lengths than the other two reaction pathways.

Keywords

References

  1. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. Vol. 89, p. 5243, 2001. https://doi.org/10.1063/1.1361065
  2. J. Robertson, Rep. Prog. Phys. Vol. 69, p. 327, 2006. https://doi.org/10.1088/0034-4885/69/2/R02
  3. K. Kukli, M. Ritala, J. Lu, A. harsta, and M. Leskela, J. Electronchem. Soc. Vol. 151, p. 189, 2004. https://doi.org/10.1149/1.1770934
  4. P. D. Kirsch, M. A. Quevedo-Lopez, H.-J. Li, Y. Senzaki,, J. J. Peterson, S. C. Song, S. A. Krishnan, N. Moumen, J. Barnett, G. Bersuker, P. Y. Hung, B. H. Lee, T. Lafford, Q. Wang, D. Gay, and J. G. Ekerdt, J. Appl. Phys. Vol. 99, p. 023508, 2006. https://doi.org/10.1063/1.2161819
  5. B. G. Willis, A. Mathew, L. S. Wielunski, and R. L. Opila, J. Phys. Chem. C. Vol. 112, p. 1994, 2008. https://doi.org/10.1021/jp0758317
  6. C. Tang, B. Tuttle, and R. Ramprasad, Phys. Rev. B. Vol. 76, p. 073306, 2007. https://doi.org/10.1103/PhysRevB.76.073306
  7. G. Kresse and J. Hafner, Phys. Rev. B. Vol. 47, p. 558, 1993 https://doi.org/10.1103/PhysRevB.47.558
  8. G. Kresse and J. Hafner, Phys. Rev. B. Vol. 49, p. 14251, 1994. https://doi.org/10.1103/PhysRevB.49.14251
  9. G. Kresse and J. Furthüller, Comput. Mat. Sci. Vol. 6, p. 15, 1996. https://doi.org/10.1016/0927-0256(96)00008-0
  10. G. Kresse and J. Furthüller, Phys. Rev. B. Vol. 54, p. 11169, 1996. https://doi.org/10.1103/PhysRevB.54.11169
  11. G. Kresse and D. Joubert, Phys. Rev. B. Vol. 59, p. 1758, 1999. https://doi.org/10.1103/PhysRevB.59.1758
  12. D. Vanderbilt, Phys. Rev. B. Vol. 41, p. 7892, 1990. https://doi.org/10.1103/PhysRevB.41.7892
  13. D. M. Wood and A. Zunger, J. Phys. A. Vol. 18, p. 1343, 1985. https://doi.org/10.1088/0305-4470/18/9/018
  14. P. Pulay, Chem. Phys. Lett. Vol. 73, p. 393 (1980). https://doi.org/10.1016/0009-2614(80)80396-4
  15. H.-C. Oh, H.-I. Seo, and Y.-C. Kim, 2008 MRS fall meeting, 2008.
  16. D.-H. Kim, H.-I. Seo and Y.-C. Kim, J. Kor. Vac. Soc. Vol. 18, p. 1, 2009. https://doi.org/10.5757/JKVS.2009.18.1.001
  17. K. Momma and F. Izumi, J. Appl. Crystallogr. Vol. 41, p. 653, 2008. https://doi.org/10.1107/S0021889808012016