• Title/Summary/Keyword: surface heat flux

Search Result 759, Processing Time 0.024 seconds

Effect of gamma irradiation on the critical heat flux of nano-coated surfaces

  • Rahimian, A.;Kazeminejad, H.;Khalafi, H.;Akhavan, A.;Mirvakili, M.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2353-2360
    • /
    • 2020
  • An anodic electrophoretic deposition (EPD) technique is used to create a uniform TiO2 thin film coating on boiling thin steel plates (1.1 mm by 90 mm). All of the effective parameters except time of the EPD method are kept constant. To investigate the effect of gamma irradiation on the critical heat flux (CHF), the test specimens were irradiated in a gamma cell to different doses ranging from 100 to 300 kGy, and then SEM and BET analysis were performed. For each coated specimen, the contact angle and capillary length were measured. The specimens were then tested in a boiling pool for CHF and boiling heat transfer coefficient. It was observed that irradiation significantly decreases the maximum pore diameter while it increases the porosity, pore surface area and pore volume. These surface modifications due to gamma irradiation increased the CHF of the nano-coated surfaces compared to that of the unirradiated surfaces. The heat transfer coefficient (HTC) of the nano-coated surfaces irradiated at 300 kGy increased from 83 to 160 kW/(㎡ K) at 885 kW/㎡ wall heat flux by 100%. The CHF of the irradiated (300 kGy) and unirradiated surfaces are 2035 kW/㎡ and 1583 kW/㎡, respectively, an increase of nearly 31%.

Effect of Circumferential Wall Heat Conduction on Boundary Conditions for Convection Heat Transfer from a Circular Tube in Cross Flow (원관 주위의 대류 열전달에서 경계조건에 대한 원주방향 열전도의 영향)

  • 이상봉;이억수;김시영
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.39-45
    • /
    • 2001
  • With uniform heat generation from the inner surface of the cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer is investigated for the case of forced convection around horizontal circular tube in cross flow of air. The wall conduction number which can be deduced from the governing energy equation should be used to express the effect of circumferential wall heat conduction. It is demonstrated that the circumferential wall heat conduction influences local Nusselt numbers of one-dimensional and two-dimensional solutions.

  • PDF

A Study of Hear Flux and Instantaneous Temperature According to the Initial Tamperature of Combustion Chamber in a Constant Volume Combustion Chamber (연소실 초기온도 변화에 따른 순간열유속에 관한 연구)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.193-200
    • /
    • 2003
  • In the production of internal combustion engines, there has been a move towards the development of high performance engines with improved fuel efficiency, lighter weight and smaller sizes. These trends help to answer problems in engines related to thermal load and abnormal combustion. In order to investigate these problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe. For achieving the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

  • PDF

LAS-Derived Determination of Surface-Layer Sensible Heat Flux over a Heterogeneous Urban Area (섬광계를 이용한 비균질 도시 지표에서의 현열속 산정)

  • Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.193-203
    • /
    • 2015
  • A large aperture scintillometer (LAS) was deployed with an optical path length of 2.1 km to estimate turbulent sensible heat flux (${\mathcal{Q}}_H$) over a highly heterogeneous urban area. Scintillation measurements were conducted during cold season in November and December 2013, and the daytime data of 14 days were used in the analysis after quality control processes. The LAS-derived ${\mathcal{Q}}_H$ show reasonable temporal variation ranging $20{\sim}160W\;m^{-2}$ in unstable atmospheric conditions, and well compare with the measured net radiation. The LAS footprint analysis suggests that ${\mathcal{Q}}_H$ can be relatively high when the newly built-up urban area has high source contribution of the turbulent flux in the study area ('northwesterly winds'). Sensitivity tests show that the LAS-derived ${\mathcal{Q}}_H$ are highly sensitive to non-dimensional similarity function for temperature structure function parameter, but relatively less sensitive to surface aerodynamic parameters and meteorological variables (temperature and wind speed). A lower Bowen ratio also has a significant influence on the flux estimation. Overall uncertainty of the estimated daytime ${\mathcal{Q}}_H$ is expected within about 20% at an upper limit for the analysis data. It is also found that stable atmospheric conditions can be poorly determined when the scintillometry technique is applied over the highly heterogeneous urban area.

SEMI-DISCRETE CENTRAL DIFFERENCE METHOD FOR DETERMINING SURFACE HEAT FLUX OF IHCP

  • Qian, Zhi;Fu, Chu-Li
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1397-1415
    • /
    • 2007
  • We consider an inverse heat conduction problem(IHCP) in a quarter plane which appears in some applied subjects. We want to determine the heat flux on the surface of a body from a measured temperature history at a fixed location inside the body. This is a severely ill-posed problem in the sense that arbitrarily "small" differences in the input temperature data may lead to arbitrarily "large" differences in the surface flux. A semi-discrete central difference scheme in time is employed to deal with the ill posed problem. We obtain some error estimates which also give the information about how to choose the step length in time. Some numerical examples illustrate the effects of the proposed method.

A study on the transient cooling process of a vertical-high temperature tube in an annular flow channel (환상유로에 있어서 수직고온관의 과도적 냉각과정에 관한 연구)

  • 정대인;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.156-164
    • /
    • 1986
  • In the case of boiling on high temperature wall, vapor film covers fully or parcially the surface. This phenomenon, film boiling or transition boiling, is very important in the surface heat treatment of metal, design of cryogenic heat exchanger and emergency cooling of nuclear reactor. Mainly supposed hydraulic-thermal accidents in nuclear reactor are LCCA (Loss of Coolant Accident) and PCM (Power-Cooling Mismatch). Recently, world-wide studies on reflooding of high temperature rod bundles after the occurrence of the above accidents focus attention on wall temperature history and required time in transient cooling process, wall superheat at rewet point, heat flux-wall superheat relationship beyond the transition boiling region, and two-phase flow state near the surface. It is considered that the further systematical study in this field will be in need in spite of the previous results in ref. (2), (3), (4). The paper is the study about the fast transient cooling process following the wall temperature excursion under the CHF (Critical Heat Flux) condition in a forced convective subcooled boiling system. The test section is a vertically arranged concentric annulus of 800 mm long and 10 mm hydraulic diameter. The inner tube, SUS 304 of 400 mm long, 8 mm I.D, and 7 mm O.D., is heated uniformly by the low voltage AC power. The wall temperature measurements were performed at the axial distance from the inlet of the heating tube, z=390 mm. 6 chromel- alumel thermocouples of 76 .mu.m were press fitted to the inner surface of the heating tube periphery. To investigate the heat transfer characteristics during the fast transient cooling process, the outer surface (fluid side) temperature and the surface heat flux are computed from the measured inner surface temperature history by means of a numerical method for inverse problems of transient heat conduction. Present cooling (boiling) curve is sufficiently compared with the previous results.

  • PDF

Numerical Study on Combined Heat Transfer in NIR Dryer for Agricultural and Marine Products (근적외선 농수산물 건조기의 복합열전달특성에 관한 수치적 연구)

  • Choi, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.5 s.118
    • /
    • pp.395-402
    • /
    • 2006
  • Mixed heat transfer in an indirected NIR (Near Infrared Ray) dry chamber was investigated numerical analysis. It is Important that the miked heat transfer effects on double parameters which the Reynolds number and the position of emit lamp. Reynolds number are based on the outer diameter of the cylinder range from 103 to $30{\times}105$. Four difference heat transfer regimes of behavior are apparent: forced convection and radiation on the outer surface of the cylinder, pure conduction, pure natural convection and radiation between lamp surface and inner surface of the cylinder. The temperature and flow patterns are illustrated by iso-contour lines for the double parameters. Also presented are results on the convective heat transfer flux and the radiative heat transfer flux as increased with Reynolds number.

Boiling Heat Transfer Coefficients of Nanofluids Using Carbon Nanotubes (탄소나노튜브를 적용한 나노유체의 비등 열전달계수)

  • Lee, Yo-Han;Jung, Dong-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.35-44
    • /
    • 2009
  • In this study, boiling heat transfer coefficients(HTCs) and critical heat flux(CHF) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nano tubes(CNTs) dispersed at $60^{\circ}C$. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001, 0.001, 0.01, and 0.05%. For dispersion of CNTs, polyvinyl pyrrolidone(PVP) is used in distilled water. Pool boiling HTCs are taken from $10kW/m^2$ to critical heat flux for all nanofluids. Test results show that the pool boiling HTCs of the nanofluids are lower than those of pure water in entire nucleate boiling regime. On the other hand, critical heat flux is enhanced greatly showing up to 200% increase at volume concentration of 0.001% CNTs as compared to that of pure water. This is related to the change of surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of heat transfer surface are decreased due to this layer. The thin layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, maintains the nucleate boiling even at very high heat fluxes and reduces the formation of large vapor canopy at near CHF resulting in a significant increase in CHF.

Study for Assessment of the Flame Radiative Heat Transfer in a HRSG with Duct burner (덕트 버너의 추가에 따른 HRSG 내 화염 복사 열전달 산정방안에 대한 연구)

  • Kim, Daehee;Kim, Seungjin;Choi, Sangmin;Lee, Bongjae;Kim, Jinil
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.3-6
    • /
    • 2012
  • Analysis method for the radiation heat transfer from the duct burner flame to the heat exchanger in a Heat Recovery Steam Generator (HRSG) was presented to supplement the existing thermal design process. Flame on a burner and a heat exchanger were postulated as imaginary planes and flame temperature, surface and emissivity was simplified in a aspect of engineering approach. The calculated local flame radiative heat flux on the heating surface was compared with the heat flux of 3-atomic gas radiation and convection.

  • PDF

Statistical Model to Describe Boiling Phenomena for High Heat Flux Nucleate Boiling and Critical Heat Flux

  • Ha, Sang-Jun;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.230-235
    • /
    • 1996
  • The new concept of dry area formation based on Poisson distribution of active nucleation sites and the concept of the critical active site density is presented. A simple statistical model is developed to predict the change of slope of the boiling curve up to critical heat flux (CHF) quantitatively. The predictions by the present model are in good agreement with the experimental data. Also it turns out that the present model well explains the mechanism on how the surface wettability influences CHF.

  • PDF