DOI QR코드

DOI QR Code

LAS-Derived Determination of Surface-Layer Sensible Heat Flux over a Heterogeneous Urban Area

섬광계를 이용한 비균질 도시 지표에서의 현열속 산정

  • Lee, Sang-Hyun (Department of Atmospheric Science, Kongju National University)
  • 이상현 (공주대학교 대기과학과)
  • Received : 2015.01.19
  • Accepted : 2015.02.09
  • Published : 2015.06.30

Abstract

A large aperture scintillometer (LAS) was deployed with an optical path length of 2.1 km to estimate turbulent sensible heat flux (${\mathcal{Q}}_H$) over a highly heterogeneous urban area. Scintillation measurements were conducted during cold season in November and December 2013, and the daytime data of 14 days were used in the analysis after quality control processes. The LAS-derived ${\mathcal{Q}}_H$ show reasonable temporal variation ranging $20{\sim}160W\;m^{-2}$ in unstable atmospheric conditions, and well compare with the measured net radiation. The LAS footprint analysis suggests that ${\mathcal{Q}}_H$ can be relatively high when the newly built-up urban area has high source contribution of the turbulent flux in the study area ('northwesterly winds'). Sensitivity tests show that the LAS-derived ${\mathcal{Q}}_H$ are highly sensitive to non-dimensional similarity function for temperature structure function parameter, but relatively less sensitive to surface aerodynamic parameters and meteorological variables (temperature and wind speed). A lower Bowen ratio also has a significant influence on the flux estimation. Overall uncertainty of the estimated daytime ${\mathcal{Q}}_H$ is expected within about 20% at an upper limit for the analysis data. It is also found that stable atmospheric conditions can be poorly determined when the scintillometry technique is applied over the highly heterogeneous urban area.

Keywords

References

  1. Andreas, E. L., 1988: Atmospheric stability from scintillation measurements. Appl. Opt., 27, 2241-2246. https://doi.org/10.1364/AO.27.002241
  2. Bastiaanssen, W. G. M., M. Menenti, R. A. Feddes, and A. A. M. Holtslag, 1998: A remote sensing energy balance algorithm for land, SEBAL: 1. Formulation. J. Hydrol., 212-213, 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4
  3. Bergeron, O., and I. B. Strachan, 2012: Wintertime radiation and energy budget along an urbanization gradient in Montreal, Canada. Int. J. Climatol., 32, 137-152. https://doi.org/10.1002/joc.2246
  4. Beyrich, F., H. A. R. De Bruin, W. M. L. Meijninger, and F. Schipper, 2002: Experiences from one-year continuous operation of a large aperture scintillometrer over a heterogeneous land surface. Bound.-Layer Meteor., 105, 85-97. https://doi.org/10.1023/A:1019640014027
  5. Chehbouni, A., and Coauthors, 2000: Estimation of heat and momentum fluxes over complex terrain using a large aperture scintillometer. Agric. Forest Meteor., 105, 215-226. https://doi.org/10.1016/S0168-1923(00)00187-8
  6. De Bruin, H. A. R., W. Kohsiek, and B. J. J. M. van den Hurk, 1993: A verification of some methods to determine the fluxes of momentum, sensible heat and water vapour using standard deviation and structure parameter of scalar meteorological quantities. Bound.-Layer Meteor., 63, 231-257. https://doi.org/10.1007/BF00710461
  7. De Bruin, H. A. R., W. Kohsiek, B. J. J. M. van den Hurk, and W. Kohsiek, 1995: The scintillation method tested over a dry vineyard area. Bound.-Layer Meteor., 76, 25-40. https://doi.org/10.1007/BF00710889
  8. Frehlich, R. G., and G. R. Ochs, 1990: Effects of saturation on the optical scintillometer. Appl. Opt., 29, 548-553. https://doi.org/10.1364/AO.29.000548
  9. Garratt, J. R., 1992: The atmospheric boundary layer. Cambridge University Press, UK, 316 pp.
  10. Geli, H. M. E., M. U. N. Christopher, D. Watts, J. Osterberg, H. A. R. De Bruin, W. Kohsiek, R. T. Pack, and L. E. Hipps, 2012: Scintillometer-based estimates of sensible heat flux using lidar-derived surface roughness. J. Hydrometeor., 13, 1317-1331. https://doi.org/10.1175/JHM-D-11-085.1
  11. Grimmond, C. S. B., and T. R. Oke, 1999: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteorol., 38, 1262-1292. https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
  12. Hartogensis, C. J. W., J. C. Rodriguez, and H. A. R. De Bruin, 2003: Derivation of an effective height for scintillometers: La Poza experiment in northwest Mexico. J. Hydrometeor., 4, 915-928. https://doi.org/10.1175/1525-7541(2003)004<0915:DOAEHF>2.0.CO;2
  13. Hill, R. J., S. F. Clifford, and R. S. Lawrence, 1980: Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity and pressure fluctuations. J. Opt. Soc. Amer., 70, 1192-1205. https://doi.org/10.1364/JOSA.70.001192
  14. Hogstrom, U., 1988: Non-dimensional wind and temperature profiles in the atmospheric surface layer: A reevaluation. Bound.-Layer Meteor., 42, 55-78. https://doi.org/10.1007/BF00119875
  15. Horst, T. W., and J. C. Weil, 1992: Footprint estimation for scalar flux measurements in the atmospheric surface layer. Bound.-Layer Meteor., 59, 279-296. https://doi.org/10.1007/BF00119817
  16. Hsieh, C. I., G. Katul, and T. W. Chi, 2000: An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water Resour., 23, 765-772. https://doi.org/10.1016/S0309-1708(99)00042-1
  17. Kahng, K., H.-J. Koo, J.-Y. Byon, Y.-S. Park, and H.-S. Jung, 2013: Comparison of surface fluxes based on landuse characteristics near Gangjeong-Goryeong weir of the Nakdong river. J. Korean Earth Sci. Soc., 34, 561-574 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2013.34.6.561
  18. Kanda, M., R. Moriwaki, M. Roth, and T. Oke, 2002: Area-averaged sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometry. Bound.-Layer Meteor., 105, 177-193. https://doi.org/10.1023/A:1019668424982
  19. Kim, Y.-H., S.-B. Ryoo, J.-J. Baik, I.-S. Park, H.-J. Koo, and J.-C. Nam, 2008: Does the restoration of an inner-city stream in Seoul affect local thermal environment?. Theor. Appl. Climatol., 92, 239-248. https://doi.org/10.1007/s00704-007-0319-z
  20. Kleissl, J., O. K. Hartogensis, and J. D. Gomez, 2010: Test of scintillometer saturation correction methods using field experimental data. Bound.-Layer Meteor., 137, 493-507. https://doi.org/10.1007/s10546-010-9540-x
  21. Kljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid, 2004: A simple parameterisation for flux footprint predictions. Bound.-Layer Meteor., 112, 503-523. https://doi.org/10.1023/B:BOUN.0000030653.71031.96
  22. Lagouarde, J. P., M. Irvine, J. M. Bonnefond, C. S. B. Grimmond, N. Long, T. R. Oke, J. A. Salmond, and B. Offerle, 2006: Monitoring the sensible heat flux over urban areas using large aperture scintillometry: case study of Marseille city during the ESCOMPTE experiment. Bound.-Layer Meteor., 118, 449-476. https://doi.org/10.1007/s10546-005-9001-0
  23. Lee, S.-H., J.-H. Lee, and B.-Y. Kim, 2015: Estimation of turbulent sensible heat and momentum fluxes over a heterogeneous urban area using a large aperture scintillometer. Adv. Atmos. Sci., 32, 1092-1105. https://doi.org/10.1007/s00376-015-4236-2
  24. Liu, S. M., Z. W. Xu, Z. L. Zhu, Z. Z. Jia, and M. J. Zhu, 2013: Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol., 487, 24-38. https://doi.org/10.1016/j.jhydrol.2013.02.025
  25. Liu, S. M., Z. W. Xu, W. Z. Wang, Z. Z. Jia, M. J. Zhu, and J. M. Wang, 2011: A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci., 15, 1291-1306. https://doi.org/10.5194/hess-15-1291-2011
  26. Marx, A., H. Kunstmann, D. Schuttemeyer, and A. F. Moene, 2008: Uncertainty analysis for satellite derived sensible heat fluxes and scintillometer measurements over Savannah environment and comparison to mesoscale meteorological simulation results. Agric. Forest Meteor., 148, 656-667. https://doi.org/10.1016/j.agrformet.2007.11.009
  27. McDonald, R. W., R. F. Griffiths, and D. J. Hall, 1998: An improved method for estimation of surface roughness of obstacle arrays. Atmos. Environ., 32, 1857-1864. https://doi.org/10.1016/S1352-2310(97)00403-2
  28. Meijninger, W. M. L., O. K. Hartogensis, W. Kohsiek, J. Hoedjes, R. Zuurbier, and H. A. R. De Bruin, 2002: Determination of area averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface-Flevoland field experiment. Bound.- Layer Meteor., 105, 63-83. https://doi.org/10.1023/A:1019683616097
  29. Moriwaki, R., and M. Kanda, 2004: Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J. Appl. Meteorol., 43, 1700-1710. https://doi.org/10.1175/JAM2153.1
  30. Offerle, B., C. S. B. Grimmond, K. Fortuniak, and W. Pawlak, 2006: Intraurban differences of surface energy fluxes in a central European city. J. Appl. Meteor. Climatol., 45, 125-136. https://doi.org/10.1175/JAM2319.1
  31. Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric turbulence: Models and methods for engineering applications. John Wiley and Sons, New York, 397 pp.
  32. Pasquill, F., 1974: Atmospheric diffusion. 2nd edition. John Wiley & Sons, New York, 437 pp.
  33. Raupach, M. R., 1994: Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Bound.- Layer Meteor., 71, 211-216. https://doi.org/10.1007/BF00709229
  34. Roth, M. W., 2000: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc., 126, 941-990. https://doi.org/10.1002/qj.49712656409
  35. Samain, B., W. Defloor, and V. Pauwels, 2012: Continuous time series of catchment-averaged sensible heat flux from a large aperture scintillometer: Efficient estimation of stability conditions and importance of fluxes under stable conditions. J. Hydrometeor., 13, 423-442. https://doi.org/10.1175/JHM-D-11-030.1
  36. Schmid, H. P., 1994: Source areas for scalars and scalar fluxes. Bound.-Layer Meteor., 67, 293-318. https://doi.org/10.1007/BF00713146
  37. Tatarskii, V. I., 1961: Wave propagation in a turbulent medium. McGraw-Hill, 285 pp.
  38. Thiermann, V., and H. Grassl, 1992: The measurement of turbulent surface layer fluxes by use of bichromatic scintillation. Bound.-Layer Meteor., 58, 367-389. https://doi.org/10.1007/BF00120238
  39. van Ulden, A. P., 1978: Simple estimates for vertical diffusion from sources near the ground. Atmos. Environ., 12, 2125-2129. https://doi.org/10.1016/0004-6981(78)90167-1
  40. Wang, T. I., G. R. Ochs, and S. F. Clifford, 1978: A saturation- resistant optical scintillometer to measure. J. Opt. Soc. Amer., 69, 334-338.
  41. Ward, H. C., J. G. Evans, and C. S. B. Grimmond, 2013: Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK. Atmos. Chem. Phys., 13, 4645-4666. https://doi.org/10.5194/acp-13-4645-2013
  42. Ward, H. C., J. G. Evans, and C. S. B. Grimmond, 2014: Multi-scale sensible heat fluxes in the suburban environment from largeaperture scintillometry and eddy covariance. Bound.- Layer Meteor., 152, 65-89. https://doi.org/10.1007/s10546-014-9916-4
  43. Wesely, M. L., 1976: The combined effect of temperature and humidity fluctuations on refractive index. J. Appl. Meteorol., 15, 43-49. https://doi.org/10.1175/1520-0450(1976)015<0043:TCEOTA>2.0.CO;2
  44. Wyngaard, J., Y. Izumi, and S. A. Collings, 1971: Behavior of the refractive-index-structure parameter near the ground. J. Opt. Soc. Amer., 61, 1646-1650. https://doi.org/10.1364/JOSA.61.001646
  45. Zeweldi, D. A., M. Gebremichael, J. Wang, T. Sammis, J. Kleissl, and D. Miller, 2010: Intercomparison of sensible heat flux from large aperture scintillometer and eddy covariance methods: field experiment over a homogeneous semi-arid region. Bound.-Layer Meteor., 135, 151-159. https://doi.org/10.1007/s10546-009-9460-9

Cited by

  1. Uncertainty Analysis of the Eddy-Covariance Turbulent Fluxes Measured over a Heterogeneous Urban Area: A Coordinate Tilt Impact vol.26, pp.3, 2016, https://doi.org/10.14191/Atmos.2016.26.3.473