Browse > Article
http://dx.doi.org/10.14191/Atmos.2015.25.2.193

LAS-Derived Determination of Surface-Layer Sensible Heat Flux over a Heterogeneous Urban Area  

Lee, Sang-Hyun (Department of Atmospheric Science, Kongju National University)
Publication Information
Atmosphere / v.25, no.2, 2015 , pp. 193-203 More about this Journal
Abstract
A large aperture scintillometer (LAS) was deployed with an optical path length of 2.1 km to estimate turbulent sensible heat flux (${\mathcal{Q}}_H$) over a highly heterogeneous urban area. Scintillation measurements were conducted during cold season in November and December 2013, and the daytime data of 14 days were used in the analysis after quality control processes. The LAS-derived ${\mathcal{Q}}_H$ show reasonable temporal variation ranging $20{\sim}160W\;m^{-2}$ in unstable atmospheric conditions, and well compare with the measured net radiation. The LAS footprint analysis suggests that ${\mathcal{Q}}_H$ can be relatively high when the newly built-up urban area has high source contribution of the turbulent flux in the study area ('northwesterly winds'). Sensitivity tests show that the LAS-derived ${\mathcal{Q}}_H$ are highly sensitive to non-dimensional similarity function for temperature structure function parameter, but relatively less sensitive to surface aerodynamic parameters and meteorological variables (temperature and wind speed). A lower Bowen ratio also has a significant influence on the flux estimation. Overall uncertainty of the estimated daytime ${\mathcal{Q}}_H$ is expected within about 20% at an upper limit for the analysis data. It is also found that stable atmospheric conditions can be poorly determined when the scintillometry technique is applied over the highly heterogeneous urban area.
Keywords
Heterogeneous surface; Monin-Obukov similarity theory; scintillometer; sensible heat flux;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kanda, M., R. Moriwaki, M. Roth, and T. Oke, 2002: Area-averaged sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometry. Bound.-Layer Meteor., 105, 177-193.   DOI
2 Kim, Y.-H., S.-B. Ryoo, J.-J. Baik, I.-S. Park, H.-J. Koo, and J.-C. Nam, 2008: Does the restoration of an inner-city stream in Seoul affect local thermal environment?. Theor. Appl. Climatol., 92, 239-248.   DOI
3 Kleissl, J., O. K. Hartogensis, and J. D. Gomez, 2010: Test of scintillometer saturation correction methods using field experimental data. Bound.-Layer Meteor., 137, 493-507.   DOI
4 Kljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid, 2004: A simple parameterisation for flux footprint predictions. Bound.-Layer Meteor., 112, 503-523.   DOI
5 Lagouarde, J. P., M. Irvine, J. M. Bonnefond, C. S. B. Grimmond, N. Long, T. R. Oke, J. A. Salmond, and B. Offerle, 2006: Monitoring the sensible heat flux over urban areas using large aperture scintillometry: case study of Marseille city during the ESCOMPTE experiment. Bound.-Layer Meteor., 118, 449-476.   DOI
6 Lee, S.-H., J.-H. Lee, and B.-Y. Kim, 2015: Estimation of turbulent sensible heat and momentum fluxes over a heterogeneous urban area using a large aperture scintillometer. Adv. Atmos. Sci., 32, 1092-1105.   DOI
7 Liu, S. M., Z. W. Xu, Z. L. Zhu, Z. Z. Jia, and M. J. Zhu, 2013: Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol., 487, 24-38.   DOI
8 Liu, S. M., Z. W. Xu, W. Z. Wang, Z. Z. Jia, M. J. Zhu, and J. M. Wang, 2011: A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci., 15, 1291-1306.   DOI
9 Marx, A., H. Kunstmann, D. Schuttemeyer, and A. F. Moene, 2008: Uncertainty analysis for satellite derived sensible heat fluxes and scintillometer measurements over Savannah environment and comparison to mesoscale meteorological simulation results. Agric. Forest Meteor., 148, 656-667.   DOI
10 McDonald, R. W., R. F. Griffiths, and D. J. Hall, 1998: An improved method for estimation of surface roughness of obstacle arrays. Atmos. Environ., 32, 1857-1864.   DOI
11 Meijninger, W. M. L., O. K. Hartogensis, W. Kohsiek, J. Hoedjes, R. Zuurbier, and H. A. R. De Bruin, 2002: Determination of area averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface-Flevoland field experiment. Bound.- Layer Meteor., 105, 63-83.   DOI
12 Moriwaki, R., and M. Kanda, 2004: Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J. Appl. Meteorol., 43, 1700-1710.   DOI
13 Offerle, B., C. S. B. Grimmond, K. Fortuniak, and W. Pawlak, 2006: Intraurban differences of surface energy fluxes in a central European city. J. Appl. Meteor. Climatol., 45, 125-136.   DOI
14 Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric turbulence: Models and methods for engineering applications. John Wiley and Sons, New York, 397 pp.
15 Pasquill, F., 1974: Atmospheric diffusion. 2nd edition. John Wiley & Sons, New York, 437 pp.
16 Raupach, M. R., 1994: Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Bound.- Layer Meteor., 71, 211-216.   DOI
17 Roth, M. W., 2000: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc., 126, 941-990.   DOI
18 Tatarskii, V. I., 1961: Wave propagation in a turbulent medium. McGraw-Hill, 285 pp.
19 Samain, B., W. Defloor, and V. Pauwels, 2012: Continuous time series of catchment-averaged sensible heat flux from a large aperture scintillometer: Efficient estimation of stability conditions and importance of fluxes under stable conditions. J. Hydrometeor., 13, 423-442.   DOI
20 Schmid, H. P., 1994: Source areas for scalars and scalar fluxes. Bound.-Layer Meteor., 67, 293-318.   DOI
21 Thiermann, V., and H. Grassl, 1992: The measurement of turbulent surface layer fluxes by use of bichromatic scintillation. Bound.-Layer Meteor., 58, 367-389.   DOI
22 van Ulden, A. P., 1978: Simple estimates for vertical diffusion from sources near the ground. Atmos. Environ., 12, 2125-2129.   DOI
23 Wang, T. I., G. R. Ochs, and S. F. Clifford, 1978: A saturation- resistant optical scintillometer to measure. J. Opt. Soc. Amer., 69, 334-338.
24 Ward, H. C., J. G. Evans, and C. S. B. Grimmond, 2013: Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK. Atmos. Chem. Phys., 13, 4645-4666.   DOI
25 Ward, H. C., J. G. Evans, and C. S. B. Grimmond, 2014: Multi-scale sensible heat fluxes in the suburban environment from largeaperture scintillometry and eddy covariance. Bound.- Layer Meteor., 152, 65-89.   DOI
26 Wesely, M. L., 1976: The combined effect of temperature and humidity fluctuations on refractive index. J. Appl. Meteorol., 15, 43-49.   DOI
27 Wyngaard, J., Y. Izumi, and S. A. Collings, 1971: Behavior of the refractive-index-structure parameter near the ground. J. Opt. Soc. Amer., 61, 1646-1650.   DOI
28 Bastiaanssen, W. G. M., M. Menenti, R. A. Feddes, and A. A. M. Holtslag, 1998: A remote sensing energy balance algorithm for land, SEBAL: 1. Formulation. J. Hydrol., 212-213, 198-212.   DOI
29 Zeweldi, D. A., M. Gebremichael, J. Wang, T. Sammis, J. Kleissl, and D. Miller, 2010: Intercomparison of sensible heat flux from large aperture scintillometer and eddy covariance methods: field experiment over a homogeneous semi-arid region. Bound.-Layer Meteor., 135, 151-159.   DOI
30 Andreas, E. L., 1988: Atmospheric stability from scintillation measurements. Appl. Opt., 27, 2241-2246.   DOI
31 Bergeron, O., and I. B. Strachan, 2012: Wintertime radiation and energy budget along an urbanization gradient in Montreal, Canada. Int. J. Climatol., 32, 137-152.   DOI
32 Beyrich, F., H. A. R. De Bruin, W. M. L. Meijninger, and F. Schipper, 2002: Experiences from one-year continuous operation of a large aperture scintillometrer over a heterogeneous land surface. Bound.-Layer Meteor., 105, 85-97.   DOI
33 Chehbouni, A., and Coauthors, 2000: Estimation of heat and momentum fluxes over complex terrain using a large aperture scintillometer. Agric. Forest Meteor., 105, 215-226.   DOI
34 De Bruin, H. A. R., W. Kohsiek, and B. J. J. M. van den Hurk, 1993: A verification of some methods to determine the fluxes of momentum, sensible heat and water vapour using standard deviation and structure parameter of scalar meteorological quantities. Bound.-Layer Meteor., 63, 231-257.   DOI
35 De Bruin, H. A. R., W. Kohsiek, B. J. J. M. van den Hurk, and W. Kohsiek, 1995: The scintillation method tested over a dry vineyard area. Bound.-Layer Meteor., 76, 25-40.   DOI
36 Frehlich, R. G., and G. R. Ochs, 1990: Effects of saturation on the optical scintillometer. Appl. Opt., 29, 548-553.   DOI
37 Garratt, J. R., 1992: The atmospheric boundary layer. Cambridge University Press, UK, 316 pp.
38 Hartogensis, C. J. W., J. C. Rodriguez, and H. A. R. De Bruin, 2003: Derivation of an effective height for scintillometers: La Poza experiment in northwest Mexico. J. Hydrometeor., 4, 915-928.   DOI
39 Geli, H. M. E., M. U. N. Christopher, D. Watts, J. Osterberg, H. A. R. De Bruin, W. Kohsiek, R. T. Pack, and L. E. Hipps, 2012: Scintillometer-based estimates of sensible heat flux using lidar-derived surface roughness. J. Hydrometeor., 13, 1317-1331.   DOI
40 Grimmond, C. S. B., and T. R. Oke, 1999: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteorol., 38, 1262-1292.   DOI
41 Hill, R. J., S. F. Clifford, and R. S. Lawrence, 1980: Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity and pressure fluctuations. J. Opt. Soc. Amer., 70, 1192-1205.   DOI
42 Hogstrom, U., 1988: Non-dimensional wind and temperature profiles in the atmospheric surface layer: A reevaluation. Bound.-Layer Meteor., 42, 55-78.   DOI
43 Horst, T. W., and J. C. Weil, 1992: Footprint estimation for scalar flux measurements in the atmospheric surface layer. Bound.-Layer Meteor., 59, 279-296.   DOI
44 Hsieh, C. I., G. Katul, and T. W. Chi, 2000: An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv. Water Resour., 23, 765-772.   DOI
45 Kahng, K., H.-J. Koo, J.-Y. Byon, Y.-S. Park, and H.-S. Jung, 2013: Comparison of surface fluxes based on landuse characteristics near Gangjeong-Goryeong weir of the Nakdong river. J. Korean Earth Sci. Soc., 34, 561-574 (in Korean with English abstract).   DOI