• Title/Summary/Keyword: surface forces

Search Result 1,168, Processing Time 0.029 seconds

Effects of Acid Modification on Pb(II) and Cu(II) Adsorption of Bamboo-based Activated Carbon (대나무 활성탄의 산 개질이 납과 구리 이온의 흡착에 미치는 영향)

  • Lee, Myoung-Eun;Chung, Jae-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.1
    • /
    • pp.3-10
    • /
    • 2016
  • Effects of acid ($HNO_3$ and HCl) modification on the adsorption properties of Pb(II) and Cu(II) onto bamboo-based activated carbon (BAC) were investigated through a series of batch experiments. The carbon content increased and oxygen content decreased with acid treatment. $HNO_3$ induced carboxylic acids and hydroxyl functional groups while HCl added no functional group onto BAC. The pseudo-second order model better described the kinetics of Pb(II) and Cu(II) adsorption onto experimented adsorbents, indicating that the rate-limiting step of the heavy metal sorption is chemical sorption involving valency forces through sharing or exchange of electrons between the adsorbate and the adsorbent. The equilibrium sorption data followed both Langmuir and Freundlich isotherm models. The adsorption capacities of BAC were affected by the surface functional groups added by acid modification. The adsorption capacities were enhanced up to 36.0% and 27.3% for Pb(II) and Cu(II), respectively by the $HNO_3$ modification, however, negligibly affected by HCl.

Analysis of the Structural Behaviours of Aluminum Tunnel Lining in Joomunjin Standard Soil by Centrifugal Model Tests (원심모형실험을 이용한 주문진 표준사 지반내 알루미늄 모형 터널 복공의 역학적 거동에 관한 연구)

  • 김택곤;김영근;박중배;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.2
    • /
    • pp.114-130
    • /
    • 1999
  • It is very important to study on the structural behaviors of structurally damaged tunnel linings. A series of centrifuge model tests were performed in order to investigate different behaviors of tunnel linings. A 1/100-scaled aluminum horseshoe tunnel linings with a radius 5 cm, height 8 cm were buried in a depth with dry Joomunjin standard sand, the relative density of which was 86%. Such sectional forces as bending moments and thrusts along the tunnel circumference were measured by twelve strain gages. Earth pressures in soil mass and on the outside of lining model were estimated by pressure transducers, ground surface settlements at a center and edges by using LVDTs.

  • PDF

Effects of cobble shape on coefficient of drag force (항력계수에 미치는 호박돌 형상의 영향)

  • Park, Sang Deog;Yoon, Min Woo;Yoon, Young Ho
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.419-427
    • /
    • 2017
  • In mountainous rivers, the drag force acting on cobbles abundant in the riverbed surface is important in predicting behavior and response of the river. However there is little research for the drag coefficients of cobbles. This paper is to carry out the experiments for drag force of cobble and analyze the relation between the cobble shape and the drag coefficient. The effects of the shape factor on the drag coefficients $C_D$ when the long axis or the short axis of the cobbles are parallel to the direction of flow velocity were analyzed. The coefficient of drag force increased with the nominal diameter Reynolds number $R_{ep}$. The drag coefficients are greater in short axis than long axis. The coefficient of determination of the relation between $C_D$ and $R_{ep}$ is greater in long axis than short axis. This means that the drag forces acting on the irregularly-shaped cobbles depend on the axis. A change of the drag force distribution has brought about the alternative swing of cobbles. For $R_{ep}$ > 12,000, the amplitude of the swing has been increased sharply and especially was greater in short axis than long axis.

Optimization of Spring Layout for Minimizing Twist of Sheet Metal Pins in Progressive Shearing (프로그레시브 전단 공정에서 박판 핀 비틀림 최소화를 위한 스프링 배치 최적화)

  • Song, H.K.;Shim, J.K.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.501-506
    • /
    • 2014
  • Progressive shearing with blanking dies is commonly employed to produce large quantities of tiny sheet metal electronic parts. Sheet metal pins, which are narrow and long, that are sheared with a progressive die set are often twisted. The twist in the sheet metal pins, which usually occurs in the final shearing operation, generally decreases with increasing blank holding force. The blank holding forces in all shearing operations are not the same because of different shearing positions and areas. In the current study, the optimal layout of the springs in a progressive die set to minimize the twist of the sheet metal pin is proposed. In order to find the holding force acting on the tiny narrow blanks produced with the proposed springs during the shearing process, the equivalent area method is used in the structural analysis. The shearing of the sheet-metal pin was simulated to compute the twist angle associated with the blank holding force. The constraint condition satisfying the pre-set blank holding force from the previous shearing operations was imposed. A design of experiments (DOE) was numerically implemented by analyzing the progressive die structure and by simulating the shearing process. From the meta-model created from the experimental results and by using a quadratic response surface method (PQRSM), the optimal layout of the springs was determined. The twist of sheet metal pin associated with the optimal layout of the springs found in the current study was compared with that of an existing progressive die to obtain a minimal amount of twist.

The impact of frenulum height on strains in maxillary denture bases

  • Cilingir, Altug;Bilhan, Hakan;Baysal, Gokhan;Sunbuloglu, Emin;Bozdag, Ergun
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.409-415
    • /
    • 2013
  • PURPOSE. The midline fracture of maxillary complete dentures is a frequently encountered complication. The purpose of this study was to assess the effect of frenulum height on midline strains of maxillary complete dentures. MATERIALS AND METHODS. A removable maxillary complete denture was fabricated and duplicated seven times. Four different labial frenulum heights were tested for stresses occurring on the palatal cameo surface. The strains were measured with strain gauges placed on 5 different locations and the stresses were calculated. To mimic occlusal forces bilaterally 100 N of load was applied from the premolar and molar region. RESULTS. A statistically significant association between the height of the labial frenulum and the calculated stresses and strains was shown (P<.05) predominantly on the midline and especially on the incisive papilla. The results showed that stress on the anterior midline of the maxillary complete denture increases with a higher labial frenulum. CONCLUSION. Within the limitations of this in vitro study, it can be concluded that the stress on the anterior midline of the maxillary complete denture increases with a higher labial frenulum. Surgical or mechanical precautions should be taken to prevent short-term failure of maxillary complete dentures due to stress concentration and low cycle fatigue tendency at the labial frenulum region.

A Study on the Effects of Wind Load of Membrane Roof Structures according to External Form (외형에 따른 지붕 막구조물의 풍하중 영향 고찰)

  • Ko, Kwang-Woong;Jang, Myung-Ho;Lee, Jang-Bog;Sur, Sam-Yeol
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.15-18
    • /
    • 2008
  • A Spatial structure, having a curvature with a curved surface, is an extremely efficient mechanical creation considering the external load. It is resisted the out-of-plane direction load by in-plane forces using the structure's curvature. Spatial Structures include many types of structures, such as: space frames or grids; cable-and-strut and tensegrity; air-supported or air-inflated; self-erecting and deployable; cable net; tension membrane; lightweight geodesic domes; folded plates; and thin shells. Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. It is very important that effects by wind load than seismic and dead load. And, wind load is different by surrounding and shape of building In this study, we analyze the results of design wind load and wind tunnel tests about the 2 stadiums which are constructed on sensitive sites by effect of wind loads.

  • PDF

Heat Transfer in Rotating Duct with $70^{\circ}$ Angled Ribs (회전하는 덕트내 설치된 $70^{\circ}$ 경사요철의 열전달 특성)

  • Choi, Chung;Lee, Sei Young;Won, Jung Ho;Cho, Hyung Hee;Park, Byung kyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.7-13
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside a cooling passage of rotating gas-turbine blades. The rotating duct has staggered ribs with $70^{\circ}$ attack angle, which are attached on leading and trailing surfaces. Naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. Additional numerical calculations are conducted to analyze the flow patterns in the cooling passage. The present experiments employ two-surface heating conditions in the rotating duct because the exposed surfaces to hot gas stream are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. Secondary flows are generated by Coriolis and centrifugal forces in the spanwise and streamwise directions. The ribs attached on the walls disturb the mainflow resulting in recirculation and secondary flows near the ribbed wall. The local heat transfer and flow patterns in the passage are changed significantly according to rib configurations and duct rotation speeds. Therefore, the geometry and arrangement of the ribs are important for the advantageous cooling performance. The experimental results show that the ribs enhance the heat transfer more than $70\%$ from that of the smooth duct. The duct rotation generates the heat transfer discrepancy between the leading and trailing walls due to the secondary flows induced by the Coriolis force. The overal heat transfer pattern on the leading and trailing walls for the first and second passes are depended on the rotating speed, but the local heat transfer trend is affected mainly by the rib arrangements.

  • PDF

Limited Internal Fixation and External Fixation of the Pilon Fractures (제한적 내고정술 및 외고정술을 이용한 경골 Pilon 골절의 치료)

  • Choi, Won-Tae;Eom, Doo-Seob;Lim, Young-Taeg;Yoo, Hyun-Jong;Jeong, Sang-Don
    • Journal of Korean Foot and Ankle Society
    • /
    • v.3 no.1
    • /
    • pp.26-32
    • /
    • 1999
  • Fractures of the tibial pilon are the severe injuries to the ankle joint resulted from axial compression, shear and/or rotational forces. The pilon fractures have been difficult in management due to the severe comminution of articular surface and frequent soft tissue problem. Among many treatment options, limited internal fixation of the tibia with long screws and multiple pins augmented with external fixation or casting provide adequate stabilization without soft tissue compromise. Among the patients of pilon fracture admitted to our hospital from March 1993 to March 1997 who treated by limited internal fixation and external fixation or casting, 25cases are included who could be follow up for more than 10months. According to Ruedi and Allgower, typeI 3cases, typeII 14cases, typeIII 8cases. The authors analyzed the clinical and radiological results of the tibial pilon fractures according to Magnusson. The results were as follow. 1. 10cases at Ruedi-Allgower typeII were obtained above fair and 5cases at Ruedi-Allgower typeIII were obtained above fair. 2. The postoperative complications were skin problem(3cases) and infection(2cases), which were treated by antibiotics and flap surgery.

  • PDF

A finite element stress analysis on the supporting bone and abutment screw by tightening torque of dental implant abutment screw (치과용 임플란트 지대주나사의 조임체결력에 따른 지지골과 지대주나사의 유한요소법 응력 분석)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.99-105
    • /
    • 2020
  • Purpose: A study analysed the stress distribution of abutment screw and supporting bone of fixture by the tightening torque force of the abutment screw within clinical treatment situation for the stability of the dental implant prosthesis. Methods: The finite element analysis was targeted to the mandibular molar crown model, and the implant was internal type 4.0 mm diameter, 10.0 mm length fixture and abutment screw and supporting bone. The occlusal surface was modeled in 4 cusps and loaded 100 N to the buccal cusps. The connection between the abutment and the fixture was achieved by combining three abutment tightening torque forces of 20, 25, and 30 Ncm. Results: The results showed that the maximum stress value of the supporting bone was found in the buccal cortical bone region of the fixture in all models. The von Mises stress value of each model showed 184.5 MPa at the 20 Ncm model, 195.3 MPa in the 25 Ncm model, and 216.5 MPa in the 30 Ncm model. The contact stress between the abutment and the abutment screw showed the stress value in the 20 Ncm model was 201.2 MPa, and the 245.5 MPa in the 25 Ncm model and 314.0 MPa in the 30 Ncm model. Conclusion: The increase of tightening force within the clinical range of the abutment screw of the implant dental prosthesis was found to have no problem with the stability of the supporting bone and the abutment screw.

A Study on the Optimum Shape of Basalt Liner for Inner Wall Protection of Ball Mill (볼밀의 내벽 보호용 현무암 라이너의 최적형상에 관한 연구)

  • Wang, Jee-Seok;Kim, Jong-Do;Yoon, Hee-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.753-760
    • /
    • 2007
  • For protection of the cylinder wall of the ball mill for grinding raw ore. the inner side of the cylinder is covered with rubber liner. The rubber is easily worn down because the rubber relatively soft compared with raw ore. So the rubber liner in the ball mill cylinder must be replaced almost every year and the cost for replacing rubber liner formidable. In this paper, for reducing or excluding the cost of replacing rubber liner the basalt liner is designed. The basalt materials are generally harder than raw ore and the basalt liner in the ball mill does not wear down and so it can be used almost permanently. The concave surfaces are made on the liner of the ball mill and the liner in the cylinder wall plays also the role of raising the steel balls mixed in the raw ore. The section profiles of the concave surface have an important effect on the performance of the ball mill. The deep concave grooves raise the steel balls to high levels and give the large potential energy to the steel balls impacting to the raw ore. But if the concave grooves are too deep. the steel balls raised too high by the concave grooves fly along the parabolic path and reach to the other side of cylinder wall and so the steel balls do not play the roles of grinding the raw ore. The forces acting to a steel ball in a concave groove of the cylinder liner are also analyzed in this paper. The formulas calculating the height and the impact point of the steel ball are introduced and presented. Based to these formulas, the optimum section profiles of the basalt liner are presented.