• Title/Summary/Keyword: surface flaw

Search Result 94, Processing Time 0.023 seconds

Guided Wave Mode Selection and Flaw Detection for Long Range Inspection of Polyethylene Coated Steel Gas Pipes (폴리에틸렌 코팅 가스배관의 광범위탐상을 위한 유도초음파 모드 선정 및 결함 검출)

  • Song, Sung-Jin;Park, Joon-Soo;Shin, Hyeon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.406-414
    • /
    • 2001
  • Ultrasonic guided waves were explored to apply them to the long range inspection of polyethylene coated steel gas pipes. The steel pipes have such dimensions as 190.7mm inside diameter and 5.3mm thickness. The outside surface of the pipe is coated by a polyethylene layer of $1.9{\pm}0.5mm$ thickness. Non-axisymmetric guided waves were excited on the outside surface of the polyethylene coated pipe by using a 0.5MHz transducer with a variable angle shoe. Frequency and phase velocity tuning was used to find optimum guided wave modes for the inspection. The dispersive characteristics of the modes were analyzed in time-frequency representation obtained by short time Fourier transforms. Sample results were presented for artificial defects such as wall thinning and hole.

  • PDF

A Study on the Safety of Lifting Cable for Construction of Coastal Structures (항만건설을 위한 케이슨 들고리의 안전성에 관한 연구)

  • Kwak, Kae Hwan;Jang, Ki Woong;Kim, Jong Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.85-99
    • /
    • 1998
  • This paper describes an experimental study to examine collapse causes of the lifting cable due to brittle failure of an fitting anchor under the lifting works. Also, in this study an collapse mechanism that was obtained from stress analysis was compared with an actual collapse procedure. Fractographical analysis as well as chemical component test, tension test and Charpy V-Notch impact test for the fractured steel members were carried out. And then, its results were compared with that of normal steel members. Circumferential surface flaws were developed at internal facets of the fitting anchor before tensile stress occurred. Hence, a higher stress than nominal stress was occurred at flaws by stress concentration at the crack tip. Also, stress intensity factor of members increased by crack size of the potential flaws. Because the stress intensity factor at the crack tip was greater than critical values(fracture toughness), brittle fracture occurred under the lifting works. It is judged that the main collapse of the lifting cable is due to brittle fracture of the fitting anchor.

  • PDF

Nondestructive Examination of PHWR Pressure Tube Using Eddy Current Technique (와전류검사 기술을 적용한 가압중수로 원전 압력관 비파괴검사)

  • Lee, Hee-Jong;Choi, Sung-Nam;Cho, Chan-Hee;Yoo, Hyun-Joo;Moon, Gyoon-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.254-259
    • /
    • 2014
  • A pressurized heavy water reactor (PHWR) core has 380 fuel channels contained and supported by a horizontal cylindrical vessel known as the calandria, whereas a pressurized water reactor (PWR) has only a single reactor vessel. The pressure tube, which is a pressure-retaining component, has a 103.4 mm inside diameter ${\times}$ 4.19 mm wall thickness, and is 6.36 m long, made of a zirconium alloy (Zr-2.5 wt% Nb). This provides support for the fuel while transporting the $D_2O$ heat-transfer fluid. The simple tubular geometry invites highly automated inspection, and good approach for all inspection. Similar to all nuclear heat-transfer pressure boundaries, the PHWR pressure tube requires a rigorous, periodic inspection to assess the reactor integrity in accordance with the Korea Nuclear Safety Committee law. Volumetric-based nondestructive evaluation (NDE) techniques utilizing ultrasonic and eddy current testing have been adopted for use in the periodic inspection of the fuel channel. The eddy current testing, as a supplemental NDE method to ultrasonic testing, is used to confirm the flaws primarily detected through ultrasonic testing, however, eddy current testing offers a significant advantage in that its ability to detect surface flaws is superior to that of ultrasonic testing. In this paper, effectiveness of flaw detection and the depth sizing capability by eddy current testing for the inside surface of a pressure tube, will be introduced. As a result of this examination, the ET technique is found to be useful only as a detection technique for defects because it can detect fine defects on the surface with high resolution. However, the ET technique is not recommended for use as a depth sizing method because it has a large degree of error for depth sizing.

Development of an EMAT System for Detecting flaws in Pipeline (배관결함 검출을 위한 EMAT 시스템 개발)

  • Ahn, Bong-Young;Kim, Young-Joo;Kim, Young-Gil;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • It is possible to detect flaws in pipelines without interruption using all EMAT transducer because it is a non-contact transducer which can transmit ultrasonic waves into specimens without couplant. And it ran easily generate guided waves desired in each specific problem by altering the design of coil and magnet. In the present work, EMAT systems have been fabricated to generate surface waves, and selectively the plate wave of $A_1\;or\;S_1$ mode. The surface wave of 1.5MHz showed a good signal-to-noise ratio without distortion in its propagation along a pipeline, while the $S_1$ mode of 800kHz and the $A_1$ mode of 940kHz were distorted according to their dispersive properties. The wider the excitation pulse becomes, the better the mode selectivity of the plate waves becomes. A pipe of 256mm inner diameter and 5.5m thickness with 5 flaws was used for comparing the flaw detectability among the modes under consideration.

Integrity Evaluation of Railway Bogie Using Infrared Thermography Technique (적외선 열화상 기술을 이용한 철도차량 대차 건전성 평가)

  • Kim, Jeong-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.144-149
    • /
    • 2011
  • The lock-in thermography was employed to evaluate the integrity of railway bogies. Prior to the actual application on railway bogies, in order to assess the detectability of known flaws, the calibration reference panel was prepared with various dimensions of artificial flaws. The panel was composed of structural steel, which was the same material with actual bogies. Through lock-in thermography evaluation, the optimal frequency of heat source was determined for the best flaw detection. Based on the defects information, the actual defect assessments on railway bogie were conducted with different types of railway bogies, which were used for the current operation. In summary, the defect assessment results with thermography method showed a good agreement as compared with the conventional inspection techniques. Moreover, it was found that the novel infrared thermography technique could be an effective way for the inspection and the detection of surface defects on bogies since the infrared thermography method provided rapid and non-contact mode for the investigation of railway bogies.

Measurement of Internal Defects of Pressure Vessels using Unwrapping images in Digital Shearography (Digital Shearography 에서 Unwrapping 이미지와 FEM 을 이용한 압력용기의 내부결함 측정)

  • Kim, Seong-Jong;Kang, Young-June;Sung, Yeon-Hak;Ahn, Yong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.48-55
    • /
    • 2012
  • Pressure vessels in vehicle industries, power plants, and chemical industries are often affected by flaw and defect generated inside the pressure vessels due to production processes or being used. It is very important to detect such internal defects of pressure vessel because they sometimes bring out serious problems. In this paper, an optical defect detection method using digital shearography is used. This method has advantages that the inspection can be performed at a real time measurement and is less sensitive to environmental noise. Shearography is a laser-based technique for full-field, non-contacting measurement of surface deformation (displacement or strain). The ultimate goal of this paper is to detect flaws in pressure vessels and to measure the lengths of the flaws by using unwrapping, phase images which are only obtained by Phase map. Through this method, we could decrease post-processing (next processing). Real length of a pixel can be calculated by comparing minimum and maximum unwrapping images with shearing angle. Through measuring several specimen defects which have different lengths and depths of defect, it can be possible to interpret quantitatively by calculating gray level.

An Experimental Study of Flow Characteristics Past vortical wall with Bottom Gap (수직벽 하부에 있는 틈새 후방의 유동특성에 관한 실험적 연구)

  • Cho Dae-Hwan;Lee Gyoung-Woo;Oh Kyoung-Gun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.153-158
    • /
    • 2005
  • The turbulent shear flaw around a surface-mounted vertical wall was investigated using the two-frame PIV(CACTUS 3.1) system. From this study, it is revealed that at least 500 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics, but only 200 field data are sufficient for the time-averaged mean velocity information The flow has an unsteady recirculation region post vertical wall with bottom gap, followed by a slow relaxation to the fiat-plate boundary layer flow. The time-averaged reattachment length estimated from the streamline distribution is about x/H=3H. The large eddy structure in the separated shear layer seems to have signification influence on the development of the separated shear layer and the reattachment process.

  • PDF

Behavior of Fatigue Crack Propagation from Surface Flaw (表面欠陷 에 發생하는 疲勞크랙擧動)

  • 송삼홍;오환섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.150-157
    • /
    • 1985
  • In terms of behavior of fatigue cracks propagated after build-up around the artificial drilled miro-hole, this study has been made of the build-up process of slips and micro cracks, behavior of micro-crack propagation and the definition of fatigue limit under the rotating bending stress with low carbon steel. The results of this study are as follows: (1) The fatigue limit is the repropagating critical stress for the nonpropagating cracks which have grown to some limit around the micro-hole in regard of the magnitude of micro-hole. (2) Behavior of the slips and micro-cracks initiation are occurring simultaneously in front and in rear of micro-hole tips in the view of the rotational direction, regardless of the magnitude of micro-hole. (3) Behavior of fatigue crack propagation is different from magnitude of micro-hole, its behavior is propagation of single crack about respectively large hole, but about respectively small hole, fatigue crack propagated joining phenomena of micro-cracks. (4) The behavior of fatigue fracture is affected by the factor of its defects in the view of magnitude of micro-hole when the diameter of the micro-holes are smaller than 50.mu.m, and this is also affected with the size effect of micro-hole diameter.

Effects of particle size on processing variables and green microstructure in gelcast alumina green bodies (겔-케스팅한 알루미나 성형체에서 출발입도가 공정변수 및 성형 미세구조에 미치는 영향)

  • Ha, Chang-Gi;Kim, Jae-Won;Jo, Chang-Yong;Baek, Un-Gyu;Jeong, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.869-878
    • /
    • 2001
  • Alumina $(Al_2O_3)$ green bodies were fabricated by gel-casting using three kinds of alumina with different particle size (mean particle size: 4.6 $\mu\textrm{m}$, 0.32 $\mu\textrm{m}$, 10nm). The effects of particle size on gel-casting process and green microstructure were investigated. The optimum dispersion conditions using ammonium salt (D-3019) as dispersant were 0.2 wt% (4.63 $\mu\textrm{m}$), 0.5 wt% (0.32 $\mu\textrm{m}$), and 5.0 wt% (10 nm), in high solid loading. The optimum solid loading of each starting material for gel-casting was obtained as 59 vol% (4.63 $\mu\textrm{m}$), 57 vol% (0.32 $\mu\textrm{m}$), 15 vol% (10 nm), depending on particle size, indicating that nano-size particle (10 nm) represent lower solid loading as high specific surface area than those of other two starting materials. The drying at ambient conditions (humidity; $\thickapprox$90%) was performed more than 48hrs to enable ejection of the part from the mold and then at $120^{\circ}C$ for 2hrs in an air oven, showing no crack and flaw in the dried green bodies. The pore size and distribution of the gelcast green bodies showed the significant decrease with decreasing particle size. Green microstructure was dependent on the pore size and distribution due to the particle size, and on the deairing step. The green density maximum obtained was 58.9% (4.63 $\mu\textrm{m}$), 60% (0.32 $\mu\textrm{m}$), 47% (10 nm) theoretical density (TD), and the deairing step applied before gel-casting did not affect green density.

  • PDF

Effect of an Increased Wall Thickness on Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube (Zr-2.5Nb 중수로 압력관의 수소지연파괴에 미치는 압력관 두께의 영향)

  • Jeong, Yong-Hwan;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.226-233
    • /
    • 1995
  • The wall thickness of a pressure tube is increased in order to reduce the probability of failure in a pressure tube of CANDU type reactor. It is presented here that the variation of wall thickness changes stress, hydrogen concentration and delayed hydride cracking in Zr-2.5Nb pressure tube. When the wall thickness is increased from 4.2 mm to 5.2 mm, the stress exerted on the tube and the deuterium taken up during operation are reduced by 19%. Further, the calculated allowable depth of the surface flaw over which delayed hydride cracking(DHC) is susceptible increases by 50%. DHC initiation is controlled by the stress and by the hydrogen concentration in the pressure tube. The results are therefore very significant in such a respect that increased wall thickness may reduce DHC initiation. Ac the wall thickness increases the hydrostatic tension will increase. Its impact on the acceleration of the crack growth rate of DHC deserves further studies.

  • PDF