• Title/Summary/Keyword: surface electric resistivity

Search Result 101, Processing Time 0.019 seconds

Analysis of the Electromagnetic Scattering by a Resistive Strip Grating Tapered Resistivity On a Grounded Dielectric Plane -from Zeores at One Edge to Infinite at the Other Edge- (접지된 유전체층 위에 변하는 저항율을 갖는 저항띠 격자구조에서의 전자파산란 해석 -한쪽 모서리에서 0이고 다른쪽 모서리로 가면서 무한대로 변하는 경우-)

  • Yoon, Uei-Joong
    • The Journal of Information Technology
    • /
    • v.8 no.2
    • /
    • pp.77-84
    • /
    • 2005
  • In this paper, electromagnetic scattering problems by a resistive strip grating with tapered resistivity on a grounded dielectric plane according to strip width and spacing, relative permittivity and thickness of dielectric layers, and incident angles of a electric wave are analyzed by applying the Fourier-Galerkin Moment Method known as a numerical procedure. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip. The resistivity of resistive strips in this paper varies from zeroes at one edge to infinite at the other edge, then the induced surface current density on the resistive strip is expanded in a series of Jacobi polynomials of the order ${\alpha}=0.2,\;{\beta}=-0.2$ as a orthogonal polynomials. The numerical results of the geometrically normalized reflected power in this paper are compared with those for the existing perfectly conducting strip. The numerical results of the normalized reflected power for conductive strips case with zero resistivity in this paper show in good agreement with those of existing papers.

  • PDF

Effect of steel fibers on surface electric resistivity of steel fiber reinforced concrete for shield segment (강섬유보강 콘크리트 세그먼트의 강섬유가 표면전기저항에 미치는 영향)

  • Moon, Do-Young;Lee, Gyu-Phil;Chang, Soo-Ho;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.557-569
    • /
    • 2011
  • Steel Fiber Reinforced Concrete (SFRC) is widely used for tunnel structures such as shotcrete and segments. Corrosion of steel fibers and steel reinforcements may affect on the long-term durability of the concrete structures with steel fibers and reinforcement. Therefore, a study on the feasible method to evaluate corrosion possibility and permeability of the concrete structures is required. This experimental study examines the effect of steel fibers and internal reinforcement on the surface resistivity. Steel fiber mix ratio and corrosion of internal reinforcement were considered as variables. In the results, steel fibers significantly reduce the surface resistivity due to those conductive characteristic. In the case of 3% mix ratio, it was difficult to evaluate rate and permeability of corrosion due to the great reduction of resistivity by mixing of steel fibers.

Electrical Properties and Microstructures in Ti Films Deposited by TFT dc Sputtering

  • Han, Chang-Suk;Jeon, Seung-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.207-211
    • /
    • 2016
  • Ti films were deposited on glass substrates under various preparation conditions in a chamber of two-facing-target type dc sputtering; after deposition, the electric resistivity values were measured using a conventional four-probe method. Crystallographic orientations and microstructures, including the texture and columnar structure, were also investigated for the Ti films. The morphological features, including the columnar structures and surface roughness, are well explained on the basis of Thornton's zone model. The electric resistivity and the thermal coefficient of the resistivity vary with the sputtering gas pressure. The minimum value of resistivity was around 0.4 Pa for both the $0.5{\mu}m$ and $3.0{\mu}m$ thick films; the apparent tendencies are almost the same for the two films, with a small difference in resistivity because of the different film thicknesses. The films deposited at high gas pressures show higher resistivities. The maximum of TCR is also around 0.4 Pa, which is the same as that obtained from the relationship between the resistivity and the gas pressure. The lattice spacing also decreases with increasing sputtering gas pressure for both the $0.5{\mu}m$ and $3.0{\mu}m$ thick films. Because they are strongly related to the sputtering gas pressures for Ti films that have a crystallographic anisotropy that is different from cubic symmetry, these changes are well explained on the basis of the film microstructures. It is shown that resistivity measurement can serve as a promising monitor for microstructures in sputtered Ti films.

Physical and Electrical Properties of Nanocrystalline Carbon Films Prepared with Ti Concentration for Contact Strip Application of Electric Railway (전기철도 집전판 응용을 위한 Ti 나노금속 함량에 따른 나노결정 탄소박막의 물리적, 전기적 특성)

  • Park, Yong-Seob;Jung, Ho-Sung;Park, Chul-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1561-1564
    • /
    • 2012
  • In this work, we have fabricated the nanocrystalline carbon films by using unbalanced magnetron sputtering method with graphite and Ti targets for contact strip application of electrical railway. The power density of graphite target was fixed and the power density was increased for the increase of Ti concentration in TiC films. We investigated the hardness, surface roughness, contact angle, resistivity, HRTEM and XPS of TiC films with Ti concentration. The hardness and resistivity were improved with increasing Ti concentration. These results indicate that the improvement of hardness and resistivity is related to the increase of sp2 clusters in TiC films.

Influence of Substrate Temperature on the TiC Thin Films Prepared by Unbalanced Magnetron Sputtering Method (비대칭 마그네트론 스퍼터링 방법으로 제조된 TiC 박막의 기판온도 영향)

  • Park, Yong-Seob;Lee, Jae-Hyeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.284-287
    • /
    • 2013
  • In this work, we have fabricated TiC films by using unbalanced magnetron sputtering method with graphite and Ti targets for contact strip application of electric railway. TiC films were deposited with various substrate temperatures. We investigated various properties of TiC films prepared with various substrate temperatures, such as the hardness, surface roughness, friction coefficient, resistivity, FESEM (Field Emission Scanning Electron Microscopy), HRTEM (High Resolution Transmission Electron Microscopy) and XPS (X-ray Photoelectron Spectroscopy). The hardness and friction coefficient properties of TiC films were improved with increasing substrate temperature. These results indicate that the improvement of hardness and resistivity is related to the increase of sp2 clusters in TiC films. And also, the resistivity value of TiC films were decreased with increasing substrate temperature.

Evaluation on the Performance of Mortars Made with Calcium Aluminate Cement (칼슘알루미네이트 시멘트 모르타르의 성능 평가)

  • Lee, Seung-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.80-87
    • /
    • 2015
  • In this study, several properties of mortars made with calcium aluminate cement (CAC) such as hydrated products, strength characteristics, absorption, surface electric resistivity and chloride ions penetration resistance were experimentally investigated. The properties of CAC mortars were compared to those of ordinary portland cement (OPC) mortars. From the test results, it was found that the main hydrated products for CAC mortars were of $C_2AH_8$ and $CAH_{10}$, while CH, ettringite and calcite for OPC mortars. The surface electric resistivity and chloride ions penetration resistance of CAC mortars were significantly beneficial compared to those of OPC mortars. However, it should be noted that the absorption properties of CAC mortars were negatively examined. Thus, it needs to have more study for the improvement of surface absorption of CAC matrices. In addition, the combined mixture of CAC and OPC were ineffective to improve some performances of mortars.

Analysis of the Electromagnetic Scattering by a Tapered Resistive Strip Grating with Zero Resistivity at the Strip-Edges On a Grounded Dielectric Plane (접지된 유전체층 위에 저항띠 양끝에서 0으로 변하는 저항율을 갖는 저항띠 격자구조에서의 전자파 산란 해석)

  • 정오현;윤의중;양승인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.883-890
    • /
    • 2003
  • In this paper, Electromagnetic scattering problems by a resistive strip grating with tapered resistivity on a grounded dielectric plane according as strip width and spacing, relative permittivity and thickness of dielectric layers, and incident angles of a electric wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) Known as a numerical procedure. The scattered electromagnetic fields are expanded in a series of floguet mode functions. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip. The tapered resistivity of resistive strips varies zero resistivity at strip edges. Then the induced surface current density on the resistive strip is expanded in a series of Chebyshev polynomials of the second kind. The numerical results of the geometrically in this paper are compared with those for the existing uniform resistivity and perfectly conducting strip. The numerical results of the normalized reflected power for conductive strips case with zero resistivity in this paper show in good agreement with those of existing paper.

The Preparation of ZnO Piezo-electric Thin Film for Surface Acoustic Wave Filter (탄성표면파 필터용 ZnO 압전 박막의 제조)

  • Lee, Dong-Yoon;Park, Jae-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.10-14
    • /
    • 2005
  • Zinc Oxide(ZnO) thin films on Si (100) substrates were deposited by RF magnetron reactive sputtering. The characteristics of zinc oxide thin films with changing sputtering conditions such as argon/oxygen gas ratios, RF power, and substrate temperature, chamber pressure and target-substrate distance were investigated. To analyze a crystallographic properties of the films, $\theta/2{\theta}$ mode X -ray diffraction, SEM, and AFM analyses. C-axis preferred orientation, resistivity, and surface roughness highly depended on Ar/$O_2$ gas ratios. The resistivity of ZnO thin films rapidly increased with increasing oxygen ratio and the resistivity value of $9{\times}10^7\;{\Omega}cm$ was obtained at a working pressure of 10 mTorr with Ar/$O_2$=50/50. The surface roughness was also improved with increasing oxygen ratio and the ZnO films deposited with Ar/$O_2$=50/50 showed the excellent roughness value of $28.7{\AA}$.

  • PDF

Influence of electrode geometry on electrical resistivity survey: Numerical study (전극의 기하학적 형상이 전기비저항 탐사에 미치는 영향: 수치 해석 연구)

  • Tae-Young Kim;Seung-Hun Lee;Hee-Hwan Ryu;Song-Hun Chong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.101-120
    • /
    • 2023
  • Electrical resistivity survey have been widely conducted at diverse scales, from a few centimeters for laboratory tests to kilometers for field tests. It measures electrical resistance through relationship of electric potential difference and current between two electrodes penetrated on the surface of medium, and eventually quantifies electrical resistivity known as inherent properties of the medium. In field or full-scale test, it assumes the electrodes as equivalent half-sphere electrodes that have a same surface area with different electrodes for ease of calculation because the contact area between electrode and medium is small and sufficient distance between two electrodes. However, small-scale laboratory test is significantly affected by the electrode geometries (penetrated depth, height, radius of electrode and distance between electrodes), which change the equipotential surface and electric current flow. Indeed, the electrode geometries may eventually cause a difference of electrical resistivity value. This study reviews the theoretical electrical resistance derived with various electrode geometries (half-sphere, cylinder, cylindrical with half-spherical tip, cylindrical with conical tip) and verifies the developed numerical module by comparing results with the theoretical electrical resistance. The distributions of electrical resistance around electrodes and among electrodes are analyzed. In addition, it is discussed how the electrical characteristic of cylindrical electrode with conical tip widely used in field test has effect on the electric current flow.

Electrical Characteristics of ZnO Piezo-electric Thin film for SAW filter (SAW 필터용 ZnO 압전 박막의 전기적 특성)

  • Lee, Dong-Yoon;Yoon, Seok-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.909-916
    • /
    • 2005
  • The structural and electrical property of RF magnetron sputtered ZnO thin film have been studied as a function of RF power, substrate temperature, oxygen/argon gas ratio and film thickness at constant sputtering power, sputtering working pressure and target-substrate distance. To analyze a crystallo-graphic properties of the films, $\theta$/2$\theta$ mode X-ray diffraction, SEM, and AFM analyses. C-axis preferred orientation, resistivity and surface roughness highly depended on oxygen/argon gas ratio. The resistivity of ZnO thin film(6000 ${\AA}$) rapidly increased with increasing oxygen ratio and the resistivity value of $9 {\ast} 10^7 {\Omega}cm$ was obtained at a working pressure of 10 mTorr with the same oxygen/argon gas ratio. The surface roughness was also improved with increasing oxygen ratio and the ZnO films deposited with the same oxygen/argon gas ratio showed the excellent roughness value of 28.7 ${\AA}$. With increase of the substrate temperature, The C-axis preferred orientation of ZnO thin film increases and the resistivity decreases due to deviation from the stoichiometric ZnO due to oxygen deficiency.