• Title/Summary/Keyword: surface drag

Search Result 397, Processing Time 0.024 seconds

Does the Sailfish Skin Reduce the Skin Friction Like the Shark Skin? (돛새치 피부는 상어 피부처럼 마찰저항을 줄일 수 있을까?)

  • SaGong, Woong;Kim, Chul-Kyu;Choi, Sang-Ho;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.101-104
    • /
    • 2008
  • The sailfish is the fastest sea animal, reaching its maximum speed of 110km/h. On its skin, a number of V-shaped protrusions pointing downstream exist. Thus, in the present study, the possibility of reducing the skin friction using its shape is investigated in a turbulent boundary layer. We perform a parametric study by varying the height and width of the protrusion, the spanwise and streamwise spacings between adjacent ones, and their overall distribution pattern, respectively. Each protrusion induces a pair of streamwsie vortices, producing low and high shear stresses at its center and side locations, respectively. These vortices also interact with those induced from adjacent protrusions. As a result, the drag is either increased or unchanged for all the cases considered. In some cases, the skin friction itself is reduced but total drag including the form drag on the protrusions is larger than that of a smooth surface. Since the shape of present protrusions is similar to that used by Sirovich and Karlsson [Nature 388, 753 (1997)] where V-shaped protrusions pointing upstream were considered, we perform another set of experiments following their study. However, we do not obtain any drag reduction even with random distribution of those V-shaped protrusion.

  • PDF

Numerical Study an Drop Breakup in Air-Assisted Spray Using the TAB Model with a Modified Drop Drag Model (TAB 모텔과 수정된 액적 항력 모텔을 이용한 공기 보초 분무에서의 액적 분열에 대한 수치적 연구)

  • 고권현;유홍선;이성혁;홍기배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.87-95
    • /
    • 2002
  • The aim of this article is to perform the numerical simulation far drop drag and breakup processes in air-assisted sprays using the Taylor analogy breakup (TAB) model with a modified drop drag model, in which a random method is newly used to consider the variation of the drop's frontal area. The predicted results for drop trajectory and Salter mean diameter (SMD) were compared with experimental data and the simulation results using the earlier published models such as TAH model, surface wave instability (Wave) model, and Wave model with original drop drag model. In addition, the effects of the breakup model constant, Ck, on prediction of spray behaviors were discussed. The results shows that the TAB model with the modified drop drag model is in better agreement with experimental data than the other models, indicating the present model is acceptable for predicting the drop breakup process in air-assisted sprays. At higher Weber numbers, the smaller Ck shows the best fitting to experimental data. It should be noted that more elaborated studies is required in order to determine the breakup model constant in the suggested model in the study.

Wettability of Biomimetic Riblet Surface like Sharkskin (상어 표피 모사 리블렛 구조의 젖음성 평가)

  • Kong, Yu Sik;Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.304-309
    • /
    • 2013
  • Shark skin has functionalities such as self-cleaning and antifouling; it also exhibits excellent drag reduction owing to a hierarchical structure of microgrooves and nanometer-long chain mucus drag reduction interfaces around the shark body. In this study, the wettability of a shark skin surface and its replicas are evaluated. First, a shark skin template is taken from a real shark. Then, shark skin replicas are produced directly from a shark skin template, using a micromolding technique. The quantitative replication precision of the shark skin replicas is evaluated by comparing the geometry of the shark skin template to the replica using 2D surface profiles. Contact angles at the solid-air-water interfaces are evaluated for the shark skin template and its replicas under two conditions: with and without hydrophobic coating. The results show that the microriblets on shark skin improve the hydrophobic feature and play a critical role in self-cleaning.

A Study of a Hydrophobic Surface: Comparing Pure Water and Contaminated Water

  • Ambrosia, Matthew Stanley;Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.407-413
    • /
    • 2013
  • The flow of sewage has been studied for hundreds of years. Reducing drag in pipes can allow sewer to be removed easily and quickly. Drag reduction is not only a macroscale issue. Physical and chemical properties of the nano-scale can affect flow at the macroscopic scale. In this paper the predictability of hydrophobicity at the nano-scale is studied. Molecular dynamics simulations were used to calculate the range of contact angles of water droplets in equilibrium on a pillared graphite surface. It was found that at a pillar height of two graphite layers there was the largest range of contact angles. It is observed that at this height the droplet begins to transition from the Wenzel state to the Cassie-Baxter state. Surfaces with larger pillar heights have much larger contact angles corresponding to a more hydrophobic surface. Silicon dioxide was also simulated in the water droplet. The contaminant slight decreased the contact angle of the water droplet.

Development of a Dynamic Downscaling Method for Use in Short-Range Atmospheric Dispersion Modeling Near Nuclear Power Plants

  • Sang-Hyun Lee;Su-Bin Oh;Chun-Ji Kim;Chun-Sil Jin;Hyun-Ha Lee
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.28-43
    • /
    • 2023
  • Background: High-fidelity meteorological data is a prerequisite for the realistic simulation of atmospheric dispersion of radioactive materials near nuclear power plants (NPPs). However, many meteorological models frequently overestimate near-surface wind speeds, failing to represent local meteorological conditions near NPPs. This study presents a new high-resolution (approximately 1 km) meteorological downscaling method for modeling short-range (< 100 km) atmospheric dispersion of accidental NPP plumes. Materials and Methods: Six considerations from literature reviews have been suggested for a new dynamic downscaling method. The dynamic downscaling method is developed based on the Weather Research and Forecasting (WRF) model version 3.6.1, applying high-resolution land-use and topography data. In addition, a new subgrid-scale topographic drag parameterization has been implemented for a realistic representation of the atmospheric surface-layer momentum transfer. Finally, a year-long simulation for the Kori and Wolsong NPPs, located in southeastern coastal areas, has been made for 2016 and evaluated against operational surface meteorological measurements and the NPPs' on-site weather stations. Results and Discussion: The new dynamic downscaling method can represent multiscale atmospheric motions from the synoptic to the boundary-layer scales and produce three-dimensional local meteorological fields near the NPPs with a 1.2 km grid resolution. Comparing the year-long simulation against the measurements showed a salient improvement in simulating near-surface wind fields by reducing the root mean square error of approximately 1 m/s. Furthermore, the improved wind field simulation led to a better agreement in the Eulerian estimate of the local atmospheric dispersion. The new subgrid-scale topographic drag parameterization was essential for improved performance, suggesting the importance of the subgrid-scale momentum interactions in the atmospheric surface layer. Conclusion: A new dynamic downscaling method has been developed to produce high-resolution local meteorological fields around the Kori and Wolsong NPPs, which can be used in short-range atmospheric dispersion modeling near the NPPs.

Aerodynamic coefficients of inclined and yawed circular cylinders with different surface configurations

  • Lin, Siyuan;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.475-492
    • /
    • 2017
  • Inclined and yawed circular cylinder is an essential element in the widespread range of structures. As one of the applications, cables on bridges were reported to have the possibility of suffering a kind of large amplitude vibration called dry galloping. In order to have a detailed understanding of the aerodynamics related to dry galloping, this study carried out a set of wind tunnel tests for the inclined and yawed circular cylinders. The aerodynamic coefficients of circular cylinders with three surface configurations, including smooth, dimpled pattern and helical fillet are tested using the force balance under a wide range of inclination and yaw angles in the wind tunnel. The Reynolds number ranges from $2{\times}10^5$ to $7{\times}10^5$ during the test. The influence of turbulence intensity on the drag and lift coefficients is corrected. The effects of inclination angle yaw angle and surface configurations on the aerodynamic coefficients are discussed. Adopting the existed the quasi-steady model, the nondimensional aerodynamic damping parameters for the cylinders with three kinds of surface configurations are evaluated. It is found that surface with helical fillet or dimpled pattern have the potential to suppress the dry galloping, while the latter one is more effective.

Study on Flow Around Circular Cylinder Advancing Beneath Free Surface (자유표면 밑을 전진하는 원주 주위의 유동에 관한 연구)

  • Yi, Hyuck-Joon;Shin, Hyun-Kyung;Yoon, Bum-Sang
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.16-21
    • /
    • 2013
  • The flow around a circular cylinder advancing beneath the free surface is numerically investigated using a VOF method. The simulations cover Froude numbers in the range of 0.2~0.6 and gap ratios (h/d) in the range of 0.1~2.0, where h is the distance from the free surface to a cylinder, and d is the diameter of a cylinder at Reynolds number 180. It is observed that the vortex suppression effect and surface deformation increase as the gap ratio decreases or the Froude number increases. The most important results of the present study are as follows. The proximity of the free surface causes an initial increase in the Strouhal number and drag coefficient, and the maximum Strouhal number and drag coefficient occur in the range of 0.5~0.7. However, this trend reverses as the gap ratio becomes small, and the lift coefficient increases downward as the gap ratio decreases.

Experimental Study on the Effects of Surface Shape and Roughness on the Magnus Effect of Rotor Sails (로터 세일의 표면 형상과 조도 변화에 따른 마그누스 효과에 관한 실험연구)

  • Young-Jin Kim;Jae-Yeun Hwang;Byoung-Kwon Ahn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.351-357
    • /
    • 2023
  • In this study, we devised methods to enhance the efficiency of rotor sails which have been applied as one of the energy saving devices of ships. The idea of the study originated from the notion that installing protrusions or increasing the surface roughness on the smooth surface of the rotor sail could delay the separation of the incoming wind flow and consequently increase the lift force. Five cylinder models were considered and tested in an open-type wind tunnel at Chungnam National University. A smooth surface cylinder exhibits the highest lift-to-drag ratio at a specific Reynolds number, and as the Reynolds number increases this value decreases sharply. The variation in this typical Magnus force can be significantly improved by altering the surface shape and roughness of the rotor sail. It has been observed that increasing the surface roughness improves the lift characteristics, resulting in increased efficiency. Furthermore, it revealed that the reverse Magnus effect which may occur during actual operation in the low spin ratio region can be significantly enhanced.

Free surface effects on 2-D airfoils and 3-D wings moving over water

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.245-264
    • /
    • 2016
  • The iterative boundary element method (IBEM) developed originally before for cavitating two-dimensional (2-D) and three-dimensional (3-D) hydrofoils moving under free surface is modified and applied to the case of 2-D (two-dimensional) airfoils and 3-D (three-dimensional) wings over water. The calculation of the steady-state flow characteristics of an inviscid, incompressible fluid past 2-D airfoils and 3-D wings above free water surface is of practical importance for air-assisted marine vehicles such as some racing boats including catamarans with hydrofoils and WIG (Wing-In-Ground) effect crafts. In the present paper, the effects of free surface both on 2-D airfoils and 3-D wings moving steadily over free water surface are investigated in detail. The iterative numerical method (IBEM) based on the Green's theorem allows separating the airfoil or wing problems and the free surface problem. Both the 2-D airfoil surface (or 3-D wing surface) and the free surface are modeled with constant strength dipole and constant strength source panels. While the kinematic boundary condition is applied on the airfoil surface or on the wing surface, the linearized kinematic-dynamic combined condition is applied on the free surface. The source strengths on the free surface are expressed in terms of perturbation potential by applying the linearized free surface conditions. No radiation condition is enforced for downstream boundary in 2-D airfoil and 3-D wing cases and transverse boundaries in only 3-D wing case. The method is first applied to 2-D NACA0004 airfoil with angle of attack of four degrees to validate the method. The effects of height of 2-D airfoil from free surface and Froude number on lift and drag coefficients are investigated. The method is also applied to NACA0015 airfoil for another validation with experiments in case of ground effect. The lift coefficient with different clearance values are compared with those of experiments. The numerical method is then applied to NACA0012 airfoil with the angle of attack of five degrees and the effects of Froude number and clearance on the lift and drag coefficients are discussed. The method is lastly applied to a rectangular 3-D wing and the effects of Froude number on wing performance have been investigated. The numerical results for wing moving under free surface have also been compared with those of the same wing moving above free surface. It has been found that the free surface can affect the wing performance significantly.

Analysis of Terminal Velocity, Drag Coefficient and Shape of Bubble Rising in High Viscous Fluid (고점도 유체 내에서 부양하는 거품의 종말속도, 항력계수, 형태 분석)

  • Kim, Jin Hyun;Kim, Jung Hyeun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.462-469
    • /
    • 2010
  • Gas-liquid 2 phase processes are usually used in chemical, biochemical, environmental engineering and food process. For optimizing these processes, understanding bubble's precise movement and shape are needed. Bubble's movement and shape are effected by liquid's properties-viscosity, surface tension and bubble's properties-size, velocity. This paper deals with experimental data of bubble's movement and shape in high viscous silicone oil. Also, drag coefficient and deformation factor given by other researcher's papers and books are used to predicting and comparing bubble's terminal velocity, drag coefficient, deformation factor and shape with experimental value. Experimental data show that bubble moves faster when it moves in lower viscous silicone oil and it's drag coefficient is bigger when it moves in high viscous silicone oil. Bubble's shape is close to sphere when moving in high viscous silicone. Formulas proposed by Batchelor expect most accurate prediction for bubble's velocity and drag coefficient. Bubble's 2D shape predicted by Batchelor's energy balance, drag coefficient and deformation factor show excellent agreement with experimental bubble's 2D shape.