• Title/Summary/Keyword: surface display

Search Result 1,680, Processing Time 0.026 seconds

Evaluation of Particle Removal Efficiency during Jet Spray and Megasonic Cleaning for Aluminum Coated Wafers

  • Choi, Hoomi;Min, Jaewon;Kulkarni, Atul;Ahn, Youngki;Kim, Taesung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.7-11
    • /
    • 2012
  • Among various wet cleaning methods, megasonic and jet spray gained their popularity in single wafer cleaning process for the efficient removal of particulate contaminants from the wafer surface. In the present study, we evaluated these two cleaning methods for particle removal efficiency (PRE) and pattern damage on the aluminum layered wafer surface. Also the effect of $CO_2$ dissolved water in jet spray cleaning is assessed by measuring PRE. It is observed that the jet spray cleaning process is more effective in terms of PRE and pattern damage compared to megasonic cleaning and the mixing of $CO_2$ in the water during jet sprays further increases the PRE. We believe that the outcome of the present study is useful for the semiconductor cleaning process engineers and researchers.

Development of Inspection System With Optical Scanning Mechanism and Near-Infrared Camera Optics for Solar Cell Wafer (광학스캐닝 메커니즘 및 근적외선 카메라 광학계를 이용한 태양전지 웨이퍼 검사장치 개발)

  • Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, inspection system based on optical scanning mechanism is designed and developed for solar cell wafer. It consists of optical scanning mechanism, NIR camera optics, machinery and control system, algorithm of defect detection and software. Optical scanning mechanism is composed of geometrical camera optics and structured hybrid illumination system. It is used to inspection of surface defects. NIR camera optics is used for inspection of defects inside solar cell wafer. It is shown that surface and internal micro defects can be detected in developed inspection system for solar cell wafer.

Characterization and deposition of ZnO thin films by Reactive Magnetron Sputtering using Inductively-Coupled Plasma (ICP) (유도결합형 플라즈마를 사용한 반응성 마그네트론 스퍼터링에 의한 ZnO 박막 증착 및 특성분석)

  • Kim, Dong-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.83-89
    • /
    • 2011
  • In this study, we investigated the effects of shutter control by Reactive Magnetron Sputtering using Inductively-Coupled Plasma(ICP) for obtaining ZnO thin films with high purity. The surface morphologies and structure of deposited ZnO thin films were characterized using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray Diffractometer (XRD). Also, optical and chemical properties of ZnO thin films were analyzed by Spectroscopic Ellipsometer (SE) and X-ray Photoelectron spectroscopy (XPS). As a result, it observed that ZnO thin films grown at reactive sputtering using shutter control and ICP were higher density, lower surface roughness, better crystallinity than other conventional sputtering deposition methods. For obtaining better quality deposition ZnO thin films, we will investigate the effects of substrate temperature and RF power on shutter control by a reactive magnetron sputtering using inductively-coupled plasma.

Nonlinear Canonical Correlation Analysis of the Korea Precipitaiton with Sea Surface Temperature near East Asia

  • Kim, Gwang-Seob;Mingdong, Sun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1620-1624
    • /
    • 2010
  • The NLCCA has been applied to analyze the East Asia sea surface temperature (SST) and Korea monthly precipitation, where the eight leading PCs of the SST and the eight PCs of the precipitation during 1973-2007 were inputs to an NLCCA model. The first NLCCA mode is plotted in the PC spaces of the Korea precipitation and the world SST present a curve linking the nonlinear relationship between the first three leading PCs of Korea precipitation and world SST forthright. The correlation coefficient between canonical variate time series u and v is 0.8538 for the first NLCCA mode. And there are some areas' climate variability have higher relationship with Korea precipitation, especially focus on the north of East Sea' climate variability have represented the higher canonical correlation with Korea precipitation, with the correlation coefficient is 0.871 and 0.838. Likewise in Korea, most stations display similarly uniform distributing characteristic and less difference, in particular the inshore stations have display identical distributing characteristic. In correlation variables' scores, the fluctuation and variation trend are also seasonal oscillation with high frequency.

  • PDF

Ultra Precision Machining of Injection Mold Core for Asymmetric Aspheric Lens using 6:4 Brass (비대칭비구면 렌즈 사출 코어용 6:4 황동 초정밀 형상 가공)

  • Lee, Dong-Kil;Gu, Hal-Bon;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.427-427
    • /
    • 2007
  • The global applications of aspherics surfaces will expand rapidly on the electronics, optical components, communications, aerospace, defense, and medical optics devices etc. Especially, Asymmetric aspheric prism lens is one of the important parts in HMD(Head Mounted Display) because it affects dominantly on the optical performance of HMD. The mold core is the most important device to produce the plastic lenses by injection molding method. In this study, the mold cores for asymmetric aspheric prism lens were processed using fly-cutting method which is kind of the ultra precision processing and form accuracy and surface roughness of the cores were measured.

  • PDF

Development of Atmospheric Pressure Plasma Equipment and It's Application to Flip Chip BGA Manufacturing Process (대기압 플라즈마 설비 개발 및 Flip Chip BGA 제조공정 적용)

  • Lee, Ki-Seok;Ryu, Sun-Joong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.15-21
    • /
    • 2009
  • Atmospheric pressure plasma equipment was successfully applied to the flip chip BGA manufacturing process to improve the uniformity of flux printing process. The problem was characterized as shrinkage of the printed flux layer due to insufficient surface energy of the flip chip BGA substrate. To improve the hydrophilic characteristics of the flip chip BGA substrate, remote DBD type atmospheric pressure plasma equipment was developed and adapted to the flux print process. The equipment enhanced the surface energy of the substrate to reasonable level and made the flux be distributed over the entire flip chip BGA substrate uniformly. This research was the first adaptation of the atmospheric pressure plasma equipment to the flip chip BGA manufacturing process and a lot of possible applications are supposed to be extended to other PCB manufacturing processes such as organic cleaning, etc.

  • PDF

Two Step Surface Texturing of Silicon Wafers using Micro Blaster (마이크로 블라스터를 이용한 실리콘 웨이퍼의 2단계 표면 텍스쳐링)

  • Cho, Chan-Seob;Jung, Sang-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.5-9
    • /
    • 2010
  • Recently, the important issues of solar cell are low cost and high efficiency. Making low cost and high efficiency solar cell, there are many effects to development of inexpensive wafer, simplify process and improve optical, electrical properties. In this the study, the 2 step texturing method using micro blaster was developed to decrease reflection of incident lights. Air bridge electrode structure is suggested to expand the effective surface area and decrease the series resistance of finger electrode. The effects of 1 step texturing and 2 step texturing by micro blaster are compared. Reflectance of 1 step and 2 step texturing are measured 28.7% and 25.5%, respectively. The reflectance of 2 step texturing sample is lower about 3.2% than 1 step textured sample.

Optimizing the Process Parameters of EDM on SCM440 Steel (SCM440강의 방전가공에서 공정변수의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.61-66
    • /
    • 2018
  • The objective of this research study is to investigate the optimal process parameters of electrical discharge machining (EDM) on SCM440 steel with copper as a tool electrode. The effect of various process parameters on machining performance is investigated in this study. Modern ED machinery is capable of machining geometrically complex or hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, etc. This paper reports the results of an experimental investigation by Taguchi method carried out to study the effects of machining parameters on material surface roughness in electric discharge machining of SCM440 steel. To predict the optimal condition, the experiments are conducted by using Taguchi's L27 orthogonal array. The work material was ED machined with copper electrodes by varying the pulsed current, pulse on-time, voltage, servo speed and spark speed. Investigations indicate that the surface roughness is strongly depend on pulsed current.

Fused Illumination Mechanism Design for Steel Plate Surface Inspection (철강 후판의 표면 검사를 위한 융합조명계 설계)

  • Cho, Eun Doek;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.14-19
    • /
    • 2017
  • In this paper, a fused illumination mechanism for detecting surface defects in steel plates was designed by applying the discriminant function that can differentiate the contrast of defects and non-defects. There is low contrast, non-uniformity, and no feature characteristics in steel plate surfaces. The fused illumination mechanism is devised, based on those characteristics. Optimum parameters of the fused illumination mechanism are determined by applying the discriminant function after acquiring the defect image in steel plate surfaces. The performance of the proposed mechanism is verified by experminets.

  • PDF

Development of Capacitive Water Level Sensor System for Boiler (보일러용 정전용량형 수위센서 시스템 개발)

  • Lee, Young Tae;Kwon, Ik Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.103-107
    • /
    • 2021
  • In this paper, a capacitive water level sensor for boilers was developed. In order to accurately monitor the water level in a high-temperature boiler that generates a lot of precipitates, the occurrence of precipitates on the surface of the water level sensor should be small, and a sensor capable of measuring even if the sensor surface is somewhat contaminated is required. The capacitive water level sensor has a structure in which one of the two electrodes is insulated with Teflon coating, and the stainless steel package of the water level sensor is brought into contact with the water tank so that the entire water tank becomes another electrode of the water level sensor. A C-V converter that converts the capacitance change of the capacitive water level sensor into a voltage change was developed and integrated with the water level sensor to minimize noise. The performance of the developed capacitive water level sensor was evaluated through measurement.