• Title/Summary/Keyword: surface damage

Search Result 2,330, Processing Time 0.037 seconds

Electrochemical Properties of Austenitic Stainless Steel with Initial Delay Time and Surface Roughness in Electropolishing Solution (전해연마 용액에서 안정화 시간과 표면 거칠기에 따른 오스테나이트 스테인리스강의 전기화학적 특성)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.158-169
    • /
    • 2022
  • The objective of this study was to investigate the electrochemical behavior and damage degree of metal surface under different conditions by performing a potentiodynamic polarization experiment using an electropolishing solution for UNS S31603 based on initial delay time and surface roughness (parameters). A second anodic peak occurred at initial delay time of 0s and 100s. However, it was not discovered at 1000s and 3600s. This research referred to an increase in current density due to hydrogen oxidation reaction among various hypotheses for the second anodic peak. After the experiment, both critical current density and corrosion current density decreased when the initial delay time (immersion time) was longer. As a result of surface analysis, characteristics of the potentiodynamic polarization behavior were similar with roughness, although the degree of damage was clearly different. With an increase in surface roughness value, the degree of surface damage was precisely observed. As such, electrochemical properties were different according to the immersion time in the electropolishing solution. To select electropolishing conditions such as applied current density, voltage, and immersion time, 1000s for initial delay time on the potentiodynamic polarization behavior was the most appropriate in this experiment.

Surface Finishability of Concrete According to Degree of Damage and the Number of Uses of the Aluminum Form

  • Noh, Sang-Kyun;Lee, Seung-Hoon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.522-529
    • /
    • 2013
  • As concrete forms, panel forms made of plywood used to be widely used, but recently a system form made of aluminum has been broadly adopted because of the advantages it offers in terms of constructability and economy. However, an aluminum form reacts with concrete, which is alkali, and creates hydrogen gas. As a result, air pockets occur on the concrete's surface, and its finishability deteriorates. Therefore, this research analyzed the relationship between the distribution of voids and surface roughness and the damage degree and number of uses of the aluminum form. The analysis of the distribution of voids shows that the number of voids of 0.1~1 mm, which are considered to have occurred because of chemical reaction, was 200~500 on the coating plywood, but was 1 500~2 000 on the aluminum form after 3 uses, and impossible to count after a higher number of uses. Surface roughness was $1.7{\sim}3.2{\mu}m$ on the coating plywood form, but was about $2.6{\mu}m$ after the first use and about $6.8{\mu}m$ after 10 uses, a 2.6-fold increase. Distribution of voids did not show a particular tendency depending upon the degree of damage to the concrete form, but surface roughness showed an increasing tendency as the degree of damage grows. Therefore, when using aluminum forms, surface maintenance should be carried out completely, such as prevention of damages to the form surface coating materials and spreading of separating materials on forms.

Effect of Annealing under Antimony Ambient on Structural Recovery of Plasma-damaged InSb(100) Surface

  • Seok, Cheol-Gyun;Choe, Min-Gyeong;Jeong, Jin-Uk;Park, Se-Hun;Park, Yong-Jo;Yang, In-Sang;Yun, Ui-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.203-203
    • /
    • 2014
  • Due to the electrical properties such as narrow bandgap and high carrier mobility, indium antimonide (InSb) has attracted a lot of attention recently. For the fabrication of electronic or photonic devices, an etching process is required. However, during etching process, enegetic ions can induce structural damages on the bombarded surface. Especially, InSb has a very weak binding energy between In atom and Sb stom, it can be easily damaged by impingement of ions. In the previous work, to evaluate the surface properties after Ar ion beam etching, the plasma-induced structural damage on the etched InSb(100) surface had been examined by resonant Raman spectroscopy. As a result, we demonstrated the relation between the enhanced transverse optical(TO) peak in the Raman spectrum and the ion-induced structral damage near the InSb surface. In this work, the annealing effect on the etched InSb(100) surface has investigated. Annealing process was performed at $450^{\circ}C$ for 10 minute under antimony ambient. As-etched InSb(100) surface had shown a strongly enhanced TO scattering intensity in the Raman spectrum. However, the annealing process with antimony flowing caused the intensity to recover due to the structural reordering and the reduction of antimony vacancies. It proves that the origin of enhanced TO scattering is Sb vacancies. Furthermore, it shows that etching-induced damage can be cured effectively by the following annealing process under Sb ambient.

  • PDF

Damage Protection Technology by Potentiostatic Method of Cu Alloy Under Cavitation Environment in Seawater (해수 내 캐비테이션 환경에서 동합금의 정전위법에 의한 손상 방지 기술)

  • Kim, Seong-Jong;Park, Jae-Cheul;Jang, Seok-Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.3
    • /
    • pp.120-125
    • /
    • 2013
  • This investigation was to identify the electrochemical corrosion protection conditions to minimize the cavitation damage by generating hydrogen gas with the means of hydrogen overvoltage before the impact pressure of the cavity is transferred to the surface. The hybrid potentiostatic test method is designed to evaluate a complexed cavitation and electrochemical characteristic for ALBC3 alloy that is diverse and its broad applications fields in marine industry. The surface observation showed that neither the cavitation damage nor the electrochemical damage by the hydrogen gas generation occurred in the potential of -2.6 V under the cavitation environment. In the potentiostatic experiments under the cavitation environment, the cavities were reflected or cancelled out by the collision of the cavities with the hydrogen gas generated by the hydrogen overvoltage.

Effect of Rail Surface Damage on Contact Fatigue Life (레일표면손상이 접촉피로수명에 미치는 영향)

  • Seo, Jung-Won;Lee, Dong-Hyong;Ham, Young-Sam;Kwon, Sung-Tae;Kwon, Seok-Jin;Cho, Ha-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.613-620
    • /
    • 2012
  • Rails are subjected to damage from rolling contact fatigue, which leads to defects such as cracks. Rolling contact fatigue damages on the surface of rail such as head check, squats are one of growing problems. Another form of rail surface damage, known as "Ballast imprint" has become apparent. This form of damage is associated with ballast particles becoming trapped between the wheel and the surface of rail. These defects are still one of the key reasons for rail maintenance and replacement. In this study, we have investigated whether the ballast imprint is an initiator of head check type cracks and effect of defect size using Finite element analysis. The FE analysis were used to investigate stresses and strains in subsurface of defects according to variation of defect size. Based on loading cycles obtained from FE analysis, fatigue analysis for each point was carried out.

Experimental Study on the Dynamic Damage Mechanism of Rocks Under Different Impact Loadings (단계적 충격하중에 의한 암석의 동적손상메커니즘에 관한 실험적 연구)

  • Cho, Sang-Ho;Jo, Seul-Ki;Ki, Seung-Kon;Park, Chan;Kaneko, Katsuhiko
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.545-557
    • /
    • 2009
  • In order to investigate dynamic damage mechanism of brittle materials, Split Hopkinson Pressure Bar (SHPB) have been adapted to apply different impact levels to rocks in South Korea. High resolution X-ray Computed Tomography (CT) was used to estimate the damage in tested rock samples nondestructively. The cracks which are parallel to the loading axis are visible on the contact surface with the incident bar under lower level of impact. The surface cracks disappeared with increment of impact level due to confined effect between the incident bar and sample, while axial splitting are happened near the outer surface.

Mechanical properties of material in Q345GJ-C thick steel plates

  • Yang, Na;Su, Chao;Wang, Xiao-Feng;Bai, Fan
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.517-536
    • /
    • 2016
  • Thick steel plate is commonly found with mega steel structures but its properties have not been fully explored. Grade Q345GJ-C steel plate with thickness ranging from 60 mm to 120 mm are studied in this paper. Both the static and cyclic performance of material in different directions (horizontal and through-thickness directions) and locations (outer surface, 1/4 thickness and mid-depth) are experimentally obtained. The accumulative damage during cyclic loading is also calculated by using bilinear mixed hardening (BMH) constitutive relationship together with the Lemaitre's damage model. Results show that the static properties are better at the outer surface of thick steel plates than those at mid-depth. Properties in through-thickness direction are similar to those at mid-depth in the horizontal direction. The cyclic performance at different locations of a given plate is similar within the range of strain amplitude studied. However, when damage parameters identified from monotonic tensile tests are included in the numerical simulation of cyclic loading tests, damage is found accumulating faster at mid-depth than close to outer surface.

Evaluation of Thermal Shock Damage of Metal Matrix Composite Using Ultasonics (초음파를 이용한 금속기지 복합재료의 열충격 손상 평가)

  • Kang, Moon-Phil;Lee, Min-Rae;Lee, Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1480-1487
    • /
    • 2005
  • Metal matrix composites(MMCs) have been rapidly becoming one of the strongest candidates for structural materials fur many high temperature application. However, among the various high temperature environments in which metal matrix composites was applied, thermal shock is known to cause significant degradation in most MMC system. Due to the appreciable difference in coefficient of thermal expansion(CTE) between reinforcement and metal matrix, internal stresses are generated following temperature changes. Infernal stresses affect degradation of mechanical properties of MMC by causing microscopic damage in interface and matrix during thermal cycling. Therefore, the nondestructive evaluation on thermal shock damage behavior of SiC/A16061 composite has been carried out using ultrasonics. For this study, SiC fiber reinforced metal matrix composite specimens fabricated by a squeeze casting technique were thermally cycled in the temperature range 298$\~$673 K up to 1000cyc1es. Three point bending test was conducted to investigate the efffct of thermal shock damage on mechanical properties. The relationship between thermal shock damage behavior and the propagation characteristics of surface wave and SH-ultrasonic wave was discussed by considering the result of SEM observation of fracture surface.

Study of Damage in Germanium Optical Window Irradiated by a Near-infrared Continuous Wave Laser (근적외선 연속발진 레이저 조사에 의한 게르마늄 광학창 손상 연구)

  • Lee, Kwang Hyun;Shin, Wan-Soon;Kang, Eung-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.82-89
    • /
    • 2014
  • The damage in germanium (Ge) optical window irradiated by a near-infrared continuous wave (CW) laser was studied. Laser-induced heating and melting process were surveyed, and the specific laser power and the irradiance time to melt were estimated by numerical simulation. The experiments were also carried out to investigate the macro and micro structure change on Ge window. Results showed that the surface deformation was formed by melting and resolidification process, the damaged surface had a polycrystalline phase, and the transmittance as an optical performance factor in mid-infrared region was decreased. We confirmed that an abnormal polycrystalline phase and surface deformation effect such as hillock formation and roughness increase reduced the transmittance of Ge window and were the damage mechanism of CW laser induced damage on Ge window.

Thermo-mechanical damage of tungsten surfaces exposed to rapid transient plasma heat loads

  • Crosby, Tamer;Ghoniem, Nasr M.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.207-217
    • /
    • 2011
  • International efforts have focused recently on the development of tungsten surfaces that can intercept energetic ionized and neutral atoms, and heat fluxes in the divertor region of magnetic fusion confinement devices. The combination of transient heating and local swelling due to implanted helium and hydrogen atoms has been experimentally shown to lead to severe surface and sub-surface damage. We present here a computational model to determine the relationship between the thermo-mechanical loading conditions, and the onset of damage and failure of tungsten surfaces. The model is based on thermo-elasticity, coupled with a grain boundary damage mode that includes contact cohesive elements for grain boundary sliding and fracture. This mechanics model is also coupled with a transient heat conduction model for temperature distributions following rapid thermal pulses. Results of the computational model are compared to experiments on tungsten bombarded with energetic helium and deuterium particle fluxes.