• Title/Summary/Keyword: surface code

Search Result 995, Processing Time 0.027 seconds

Estimating Method of Surface Roughness Using Geographic Information (지리정보를 이용한 지표면조도 산정 방법)

  • CHOI, Se-Hyu;SEO, Eun-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.3
    • /
    • pp.1-10
    • /
    • 2015
  • Rapid urban expansion and densification of the various industrial facilities affect the changes of topography and building in urban areas. Even if buildings proceed with high rise, they get mixed with low-rise buildings such as houses and industrial parks that have existed in the area. This may confuse the designer in estimating a surface roughness, an important factor in calculating the design wind velocity of building. This study analyzed the surface roughness by using a geographic information. Referring to the criteria of each country's building code, this study proposed a method to distinguish the surface roughness depending on the height of the surrounding buildings where the design building is located and calculated the surface roughness using 1:5000 topographic map and GIS. It is expected to solve problems that an existing designer calculates the surface roughness in a subjective manner and to help to design more rational buildings resistant to wind.

An optimal design of wind turbine and ship structure based on neuro-response surface method

  • Lee, Jae-Chul;Shin, Sung-Chul;Kim, Soo-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.750-769
    • /
    • 2015
  • The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

Lubrication Analysis of Surface-Textured Inclined Slider Bearing with Rectangular Dimples (사각형 딤플로 Surface Texturing한 경사진 Slider 베어링의 윤활해석)

  • Park, TaeJo;Jang, InGyu
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.191-198
    • /
    • 2022
  • With the world's fast expanding energy usage comes a slew of new issues. Because one-third of energy is lost in overcoming friction, tremendous effort is being directed into minimizing friction. Surface texturing is the latest surface treatment technology that uses grooves and dimples on the friction surface of the machine to significantly reduce friction and improve wear resistance. Despite the fact that many studies on this issue have been conducted, most of them focused on parallel surfaces, with relatively few cases of converging films, as in most sliding bearings. This study investigated the lubrication performance of surface-textured inclined slider bearings. We analyzed the continuity and Navier-Stokes equations using a commercial computational fluid dynamics code, FLUENT. The results show the pressure and velocity distributions and the lubrication performance according to the number and orientation of rectangular dimples. Partial texturing somewhat improves the lubrication performance of inclined slider bearings. The number of dimples with the maximum load-carrying capacity (LCC) and minimum friction is determined. When the major axis of the dimple is arranged in the sliding direction, the LCC and friction reduction are maximized. However, full texturing significantly reduces the LCC of the slider bearing and increases the flow rate. The results have the potential to improve the lubrication performance of various sliding bearings, but further research is required.

Guideline for Bridge Design Wind Speed in Coastal Region (해안지역 교량 설계풍속 산정 가이드라인)

  • Lee, Sungsu;Kim, Junyeong;Kim, Young-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.615-623
    • /
    • 2015
  • Estimation of wind load on bridges is one of the most important aspects in designing bridges in coastal region. Various design codes and researches have suggested the procedure to estimate design wind speed; however, they do not match one another due to many reasons such as incomplete data set, ignorance of wind environment and so on. For this reason, the necessity of guideline for estimation procedure of basic wind speed which reflect the roughness of surface and the topographical effect have been increasing. In this study, we have analysed limitations of the basic wind speed of nationwide suggested by Korea Building code(AIK, 2009) and Highway bridge design code(MOLTMA, 2010). In additional, we set forth guidelines considering the roughness of land surface and the topographical effect. Using the procedure, the basic wind speed were estimated for 15 coastal regions in Korea and compared with those listed in the existing codes.

A Study of Electro-optical Characteristics of Full-HD LCOS Panel Depending on Various Cell Gaps (Full-HD LCOS Panel의 Cell Gap의 변화에 따른 전기광학적 특성에 대한 연구)

  • Son, Hong-Bae;Kim, Min-Seok;Kang, Jung-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.6-11
    • /
    • 2009
  • The electro-optical characteristics of the Liquid Crystal on Silicon (hereinafter "LCOS") micro-display on vertically alignment (VA) mode were studied with 3-dimensional LC code. 5 different cell gaps, such as 1.4 ${\mu}m$, 1.8 ${\mu}m$, 2.1 ${\mu}m$, 2.4 ${\mu}m$ and 2.8 ${\mu}m$, were selected. The reflectance-voltage (R-V) characteristics, distribution of reflected light, reflectance, optical fill factor and contrast ratio were calculated and investigated depending on various cell gaps. Due to the surface anchoring effect, higher cell gap showed higher reflectance. However, considering the optical fill factor and contrast ratio, middle-height 2.1 ${\mu}m$ showed the best electro-optical characteristic. 0.7 inch Full-HD LCOS panels having same geometry and material property were fabricated. The reflected light intensity and contrast ratio were measured and the measured results were well-matched to the calculated results.

On the Fracture Behaviour of the Concrete Gravity Dam Subjected to Water Pressure at the Crack Faces (균열면에 수압을 받는 중력식 콘크리트 댐의 파괴거동에 관한 연구)

  • 장희석
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.189-198
    • /
    • 1996
  • The fracture behaviour of concrete gravity dam mainly due to uplift pressure acting at the crack face was studied. Triangular type and parabolic type distribution of the uplift pressure including uniform type were first considered in case of calculating stress intensity factor(SIF) by the surface integral method. Second, the directions of crack propagation according to the uplift pressure distribution were pursued by FRANC(FRacture ANalysis Code). Third, critical crack lengths according to the uplift pressure distribution under the overflow depth were calculated. The SIF values obtained from the surface integral method were compared with those by FRANC and relatively good agrements could be obtained between both of them. And it could be seen that the direction of crack propagation in case of triangular pressure distribution was a little benter to the dam base than the one by the uniform type. Maximum critical crack lengths under the overflow depth were obtained at about 2/5-1/2 of the dam height.

  • PDF

Simulation of Unsteady Rotor-Fuselage Interaction Using an Improved Free-Wake Method (향상된 자유후류 기법을 이용한 비정상 로터-동체 상호작용 시뮬레이션)

  • Lee, Joon-Bae;Seo, Jin-Woo;Lee, Jae-Won;Yee, Kwan-Jung;Oh, Se-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.629-636
    • /
    • 2010
  • This study is to investigate the aerodynamic effects of the Rotor-Fuselage Interactions in forward flight, and is conducted by using an improved time-marching free-wake panel method. To resolve the instability caused by the close proximity of the wake to the blade surface, the field velocity approach is added to the prior unsteady panel code. This modified method is applied to the ROBIN(ROtor Body Interaction) problem, which had been conducted experimentally in NASA. The calculated results, pressure distribution on fuselage surface and induced inflow ratio without and with the rotor, are compared with the experimental results. The developed code shows not only very accurate prediction of the aerodynamic characteristics for the rotor-fuselage interaction problem but also the rotor wake development.

Damage studies on irradiated tungsten by helium ions in a plasma focus device

  • Seyyedhabashy, Mir mohammadreza;Tafreshi, Mohammad Amirhamzeh;bidabadi, Babak Shirani;Shafiei, Sepideh;Nasiri, Ali
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.827-834
    • /
    • 2020
  • Damage of tungsten due to helium ions of a PF device was studied. The tungsten was analyzed by SEM and AFM after irradiation. SEM revealed fine bubbles of helium atoms with diameters of a few nanometers, which join and form larger bubbles and blisters on the surface of tungsten. This observation confirmed the results of molecular dynamics simulation. SEM analysis after etching of the irradiated surface indicated cavities with depth range of 35-85 nm. The average fluence of helium ion of the PF device was calculated about 5.2 × 1015 cm-2 per shot, using Lee code. Energy spectrum of helium ions was estimated using a Thomson parabola spectrometer as a function of dN/dE ∝ E-2.8 in the energy range of 10-200 keV. The characteristics of helium ion beam was imported to SRIM code. SRIM revealed that the maximum DPA and maximum helium concentration occur in the depth range of 20-50 nm. SRIM also showed that at depth of 30 nm, all of the tungsten atoms are displaced after 20 shots, while at depth of higher than 85 nm the destruction is insignificant. There is a close match between SRIM results and the measured depths of cavities in SEM images of tungsten after etching.

Numerical analysis of heat transfer for architectural structure composed of multiple materials in ISO10211 (복합재질로 구성된 건축 구조체의 열전달 수치해석을 위한 ISI10211모델계산)

  • Lee, Juhee;Park, JiHo;Lee, YongJun
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.159-166
    • /
    • 2016
  • Purpose: The architectural structures in the engineering field include more than one material, and the heat transfer through these multiple materials becomes complicated. More or less, the analytic solutions obtained by the hand calculation can provide the limited information of heat transfer phenomena. However, the engineers have generally been forced to obtain reliable results than those of the hand calculation. The numerical calculation such as a finite volume methods with the unstructured grid system is only the suitable means of the analysis for the complex and arbitrary domains that consists of multiple materials. In this study, a new numerical code is developed to provide temperature distributions in the multiple material domains, and the results of this code are compared with the validation cases in ISO10211. Method: Finite volume methods with an unstructured grid is employed. In terms of numerical methods, the heat transfer conduction coefficient is not defined on the surface of the cell between different material cells. The heat transfer coefficient is properly defined to accurately mimic the heat transfer through the surface. The boundary conditions of heat flux considering radiation or heat convection are also developed. Result: The comparison between numerical results and ISO 10211 cases. We are confirmed that the numerical method provides the proper temperature distributions, and the heat transfer equation and its boundary conditions are developed properly.

Design of Imaging Optical System with 24mm Focal length for MWIR (MWIR용 24mm 초점거리를 가지는 결상광학계의 설계)

  • Lee, Sang-Kil;Lee, Dong-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.203-207
    • /
    • 2018
  • This paper deals with the design and development of a lens system capable of imaging an infrared image of $3{\sim}5{\mu}m$ wavelength bands with a focal length of 24mm and good atmospheric transmission characteristics. The design used CodeV, a commercial design program, and the optimization is carried out with weighting to eliminate chromatic aberration, spherical aberration and distortion. The designed lens system consists of two lenses consisting of Si and Ge. Each lens has an aspherical surface on one side. And this optical system has the resolution of the characteristics that the MTF value is 0.40 at the line width of 29lp/mm and the MTF value is 0.25 at the line width of 20lp/mm. This optical system is considered to have the capability to be applied to the thermal imaging camera for MWIR using the $206{\times}156$ array infrared detector of $25{\mu}m$ pixels and the $320{\times}240$ array infrared detector of $17{\mu}m$ pixels.