• Title/Summary/Keyword: surface approximation

Search Result 510, Processing Time 0.026 seconds

Directional Radiation of Surface Plasmon Polaritons at Visible Wavelengths through a Nanohole Dimer Optical Antenna Milled in a Gold Film

  • Janipour, Mohsen;Hodjat-Kashani, Farrokh
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.799-808
    • /
    • 2014
  • The mechanism of optical interaction of two nanoholes, milled in an opaque gold film, by means of surface plasmon polariton (SPP) propagation is investigated. The interaction depends on the polarization direction of the incident light when the nanohole pair is illuminated through uniform single antenna excitations. It is shown that by illuminating one of the nanoholes, under single antenna excitation, the other nanohole can be excited indirectly via propagated SPPs from the excited nanohole. In addition, it is found that the spectrum of electromagnetic power above the surface of the metallic film at an arbitrary point along the axis of the nanohole pair presents two resonant peaks. These peaks are due to the optical interaction between nanoholes, where the short- and long-wavelength peaks can be assigned to in-phase and antiphase interactions of magnetic dipoles relative to each nanohole, respectively. The magnetic coupled dipole approximation (MCDA) method confirms the simulation results.

Modeling of a Functional Surface using a Modified B-spline

  • Hwang, Jong-Dae;Jung, Jong-Yun;Jung, Yoon-Gyo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • This research presents modeling of a functional surface that is constructed with a free-formed surface. The modeling of functional surfaces, being introduced in this paper, adopts a modified B-spline that utilizes an approximating technique. The modified B-Spline is constructed with altered control vertices. It is applied to measure the surface of an impeller blade. This research builds an algorithm accepting inputs of measured points. Generating the cutter-paths for NC machining employs the model of the constructed surfaces. The machined surfaces that are generated in several cases are compared with each other in the aspect of machining accuracy.

Ruled Surface의 곡률이론을 이용한 새로운 로봇궤적제어기법

  • 김재희;김상철;유범상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.683-691
    • /
    • 1997
  • This paper presents a new robot trajectory generation method based on the curvatre theory of ruled surfacees. robot trajectory is represented as a ruled surface generated by the TCP (Tool center point ) and any one unit vector among the tool frame (usually denoted O, A,N). The curvature theory of ruled surfaces provides the robot control algorithm with the motion property oarameters. The proposed method eliminates the necessity of approximation technic of either joint or cartesian interpolation. This technic may give new methodology of precision robot control. Especially this is very efficient when the robot traces an analytical or form surface if the surface is geometrically modelled.

  • PDF

Optimal Tool Positions in 5-axis NC Machining of Sculptured Surface (복합곡면의 5축 NC 가공을 위한 공구자세 최척화)

  • 전차수;차경덕
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.393-402
    • /
    • 2000
  • Recently 5-axis NC machines are widely used in Korea. Since 5-axis machines have two more degrees of freedom than 3-axis machines, it is very important to find desirable tool positions(locations and orientations) in order to make an efficient use of expensive 5-axis NC machines. In this research an algorithm to determine “optimal” tool positions for 5-axis machining of sculptured surfaces is developed. For given CC(Cutter Contact) points, this algorithm determines the cutter axis vectors which minimize cusp heights and satisfy constraints. To solve the optimal problem, we deal with following major issues: (1) an approximation method of a cusp height as a measure of optimality (2) Identifying some properties of the optimal problem (3) a search method for the optimal points using the properties. By using a polyhedral model as a machining surface, this algorithm applies to sculptured surfaces covering: overhanged surface.

  • PDF

Optimum Design of Draw-bead Force in Sheet Metal Stamping using Rigid-plastic FEM and Responses Surface Methodology (강소성 유한요소해석과 반응표면분석법을 이용한 박판성형공정에서의 드로우 비드력 최적설계)

  • Kim, Se-Ho;Huh, Hoon;Tezuka, Akira
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.143-148
    • /
    • 1999
  • Design optimization is performed to calculated the draw-bead force for satisfying the design re-quirements. For an analysis tool a rigid-plastic finite element method with modified membrane element is adopted. response surface methodology is utilized for constructing the approximation surface for the optimum searching of draw bead force in sheet metal forming process. the algorithm developed is ap-plied to a design of the draw bead forces in a deep drawing process. The results show that the design of process parameters is applicable in complex metal forming analysis. It is also noted that the present algo-rithm enhances the stable optimum solution with small times of optimization iteration.

  • PDF

Surface Tension of Molten Salts and Strong Electrolyte Solutions (용융염과 강전해질용액의 표면장력)

  • Paek, Woo-Hyun;Sung, Yong-Kil;Jhon, Mu-Shik
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.3
    • /
    • pp.263-269
    • /
    • 1970
  • A theory of surface tension developed by using the approximation that the surface of liquids consists of a monomolecular layer has been applied to the molten salts (NaCl, KCl, NaBr, KBr) and the strong electrolyte solutions. By considering that the ionic forces are the long-range forces and with the use of the partition functions developed, the surface tension of molten salts and strong electrolyte solutions has been calculated. The results show good agreement between theory and experiment at various temperatures and over a wide concentration ranges (0.1-4.0m)

  • PDF

The Electronic Structure of Methanethiol Adsorbed on Silver Surface: An Extended Huckel Study

  • Hwang, Sun-Gu;Jang, Yun-Hee;Kim, Ho-Jing
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.635-643
    • /
    • 1991
  • The adsorption of methanethiol on a Ag(100) surface has been studied with Extended Huckel calculation in the cluster approximation of the substrate. Since it has been known that methanethiol is chemisorbed dissociatively on silver surface by rupture of S-H bond, the methanethiolate radical is taken as adsorbate. Of the various adsorption sites, the 4-fold hollow site is preferred. The methanethiolate radical is mainly adsorbed via its 2e orbital. The charge transfer from metal to this level leads to the C-S bond weakening, which is consistent with the red shift of C-S stretching mode in surface enhanced Raman (SER) spectrum.

Calculation on Surface Electronic State of $TiO_2$ Electrode (TiO2 전극 표면의 전자상태 계산)

  • Lee, Dong-Yoon;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.259-262
    • /
    • 2003
  • The surface electronic state of rutile $TiO_2$, which is an oxide semiconductor and has a wide band gap of 3.1 $\sim$ 3.5 eV, was calculated by DV-$X_{\alpha}$ method, which is a sort of the first principle molecular orbital method and uses Hartre-Fock-Slater approximation. The $[Ti_{15}O_{56}]^{-52}$ cluster model was used for the calculation of bulk state and the $[OTi_{11}O_{34}]^{-24}$ model for the surface state calculation. After calculations, the energy level diagrams and the deformation electron density distribution map were compared in both models. As results, it was identified that the surface energy levels are found between the valence and conduction band of bulk $TiO_2$ on the surface area. The energy values of these surface-induced levels are lower than conduction band of bulk $TiO_2$ by 0.1 $\sim$ 1 eV. From this fact, it is expected that the surface energy levels act as donar levels in n-type semiconductor.

  • PDF

A Study on Cutting Pattern Generation of Membrane Structures Using Spline Curves (스플라인 곡선을 이용한 막구조물의 재단도 작성에 관한 연구)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.109-119
    • /
    • 2012
  • For membrane structure, there are three main steps in design and construction, which are form finding, statistical load analysis, and cutting patterning. Unlike the first two stages, the step of cutting pattern involves the translation of a double-curved surface in 3D space into a 2D plane with minimal error. For economic reasons, the seam lines of generated cutting patterns rely greatly on the geodesic line. Generally, as searching regions of the seam line are plane elements in the step of shape analysis, the seam line is not a smooth curve, but an irregularly divided straight line. So, it is how we make an irregularly divided straight line a smooth curve that defines the quality of the pattern. Accordingly, in this paper, we analyzed interpolation schemes using spline, and apply these methods to cutting pattern generation on the curved surface. To generate the pattern, three types of spline functions were used, i.e., cubic spline function, B-spline, and least-square spline approximation, and simple model and the catenary-shaped membrane was adopted to examine the result of generation. The result of comparing the approximation curves by the number of elements and the number of extracted nodes of simple model revealed that the seam line for less number of extracted nodes with large number of elements were more efficient, and the least-square spline approximation provided smoother seam line than other methods.

LEED I/V Curve Analysis of O/Fe(100) and MgO/Fe(100) System (O/Fe(100) and MgO/Fe(100) 계의 LEED I/V curve 분석)

  • Seo, J.K.;Kim, S.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • We have analyzed the atomic structure of O/Fe(100) and interface atomic structure of MgO deposited on Fe(100) surface using LEED I/V curve analysis. As the O adsorption on the Fe(100) surface, the first substrate interlayer distance is expanded by up to 16%. For 1ML MgO deposited on Fe(100) surface, the oxygen ions of MgO are located on-top of the Fe atoms, the interlayer distance at the MgO/Fe interface are expanded. From the AIA(average intensity mixing approximation) calculation, we find the interface structure of monolayer MgO on Fe(100) system has the two interface structure with MgO/FeO/Fe(100) and MgO/Fe(100). This supports the results of EELS experiment that shown existence of stretched FeO layer and coexistance of MgO/FeO/Fe(100) and MgO/Fe(100) structure.