• Title/Summary/Keyword: surface EMG signals

Search Result 105, Processing Time 0.03 seconds

Characteristics of the Fatigue Index in EMG Power Spectrum Analysis During Isokinetic Exercise (등속성 운동 시 근전도 주파수 분석에서 얻은 피로지수의 특성)

  • Won, Jong-Im;Cho, Sang-Hyun;Yi, Chung-Hwi;Kwon, Oh-Youn;Lee, Young-Hee;Park, Jung-Mi
    • Physical Therapy Korea
    • /
    • v.8 no.3
    • /
    • pp.11-26
    • /
    • 2001
  • In rehabilitation programs involving muscle re-education and endurance exercise, it is necessary to confirm when fatigue occurs. It is also necessary to quantify fatigue, to confirm whether the muscle has been exercised sufficiently. In general, as fatigue occurs, the force-generating ability of the muscle is reduced. If the median frequency (MDF) obtained from electromyogram (EMG) power spectrum is correlated highly with work, then the timing and degree of fatigue may be confirmed. This study examined the relationship between work and MDF obtained from the EMG power spectrum during repetitive isokinetic exercise. Surface EMG signals were collected from biceps brachii and vastus lateralis of 52 normal subjects (26 males, 26 females) at $120^{\circ}/sec$ and $60^{\circ}/sec$ while performing an isokinetic exercise. The exercise was finished at 25% of peak work. MDF data was obtained using a moving fast Fourier transformation (FFT), and random noise was removed using the inverse FFT, then a new MDF data was obtained from the main signal. There was a high correlation between work and MDF during repetitiv isokinetic exercise in the biceps brachii and vastus lateralis of males and the biceps brachii of females (r=.50~.77). However, there was a low correlation between work and MDF in the vastus lateralis of females (r=.06~.19).

  • PDF

Study for the Liquid Metals Enabled Stretchable Electronics (액체금속을 활용한 신축성 전자소재 개발 동향)

  • Joo Hyung Lee;Yoon Su Lee;Jin Yoo;Seoyeon Won;Taehwan Lim
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.25-31
    • /
    • 2023
  • Stretchable and flexible electronics that comply with dynamic movements and micromotion of the human tissues can enable real-time monitoring of physiologic signals onto the human skin and in the brain, respectively. Especially, gallium based liquid metal stretchable electronics can offer human-interactive biosensors to monitor various physiologic parameters. However, the liquid-like nature, surface oxidation and contamination by organic materials, and low biostability of the liquid metals have still limited the long-term use as bioelectronics. Here we introduced electrochemical deposition without oxidation pathways to overcome these practical challenges in liquid metal bioelectronics. CNT/PDDA composite with reduction way and PEDOT:BF4 with oxidation way under organic solvent are suggested as rationally designed material engineering approaches. We confirmed that the structures with the soft, flexible, and stretchable liquid metal platform can successfully detect dopamine with a high sensitivity and selectivity, record neural signals including action potentials without scar formation, and monitor physiologic signals such as EMG and ECG.

Coherence Analysis of Jaw and Neck Muscle Coordination during Chewing in Healthy Adults

  • Ho-Jun Song;Sang-Ho Han;Ji-Yeon Kim;Yeong-Gwan Im
    • Journal of Oral Medicine and Pain
    • /
    • v.48 no.4
    • /
    • pp.159-168
    • /
    • 2023
  • Purpose: Coordinated activity between the jaw and neck muscles is important in oral motor tasks such as chewing. This study examined coherence between the jaw and neck muscles during chewing in healthy adults. Methods: A total of 12 healthy adults underwent electromyography (EMG) of the jaw and neck muscles during right-sided chewing at a frequency of 1 Hz. Surface electrodes were placed over the temporalis (TA), masseter (MS), anterior digastric (DA), and sternocleidomastoid (SM) muscles on the right side. EMG signals were processed for coherence and phase analysis using advanced signal processing techniques. Results: The MS and TA muscle pair exhibited high synchronization when chewing (median coherence=0.992). Contrarily, the coherence values between the MS and DA, as well as the MS and SM muscle pairs, were relatively low (median coherence=0.848 and 0.957, respectively). Phase analysis revealed minimal temporal differences between the MS and TA muscle pair and the MS and SM muscle pair, whereas substantial phase shifts were observed between the MS and DA muscle pair. Conclusions: During chewing in healthy adults, the TA muscle works synergistically whereas the DA muscle antagonistically with the MS muscle, and the SM muscle supports the activity of the MS muscle. The observed synchrony and coordination provide insights into the intricate interplay among these muscles during oral motor tasks.

Detection of Onset and Offset Time of Muscle Activity in Surface EMG using the Kalman Smoother

  • Lee Jung-Hoon;Lee Hyun-Sook;Lee Young-Hee;Yoon Young-Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.131-141
    • /
    • 2006
  • A visual decision by clinical experts like physical therapists is a best way to detect onset and offset time of muscle activation. The current computer-based algorithms are being researched toward similar results of clinical experts. The new algorithm in this paper has an ability to extract a trend from noisy input data. Kalman smoother is used to recognize the trend to be revealed from disorderly signals. Histogram of smoothed signals by Kalman smoother has a clear boundary to separate muscle contractions from relaxations. To verify that the Kalman smoother algorithm is reliable way to detect onset and offset time of muscle contractions, the algorithm of Robert P. Di Fabio (published in 1987) is compared with Kalman smoother. For 31 templates of subjects, an average and a standard deviation are compared. The average of errors between Di Fabio's algorithm and experts is 109 milliseconds in onset detection and 142 milliseconds in offset detection. But the average between Kalman smoother and experts is 90 and 137 milliseconds in each case. Moreover, the standard deviations of errors are 133 (onset) and 210 (offset) milliseconds in Di Fabio's one, but 48 (onset) and 55 (offset) milliseconds in Kalman smoother. As a result, the Kalman smoother is much closer to determinations of clinical experts and more reliable than Di Fabio's one.

Effects of Box Color and Precision Demand on the Muscles' Recruitment Pattern in Repetitive Lifting Tasks (대칭형 들기 작업에서 사회심리적 요인이 근육 동원 형태에 미치는 영향 분석)

  • Song, Young-Woong;Lee, Wook-Gee;Kim, Sang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.3
    • /
    • pp.79-85
    • /
    • 2009
  • In this study, the effects of psychosocial stress (box color and precision demand) on muscle activity were evaluated in laboratory setting. Eight subjects performed sagittally symmetric lifting tasks. Box color (yellow, black), precision demand (yes, no), and box weight (5%MVC, 10%MVC, 15 %MVC) were varied and surface EMG signals from seven muscles(medial deltoid right, biceps brachii right, lateral triceps right, latissimus dorsi right, erector spinae right, external oblique right, internal oblique right) were recorded. EMG signals were band-pass filtered($10{\sim}400\;Hz$), rectified, RMS smoothed and normalized (NEMG). Analysis of variance tests were conducted on the total NEMG (TNEMG: the sum of the seven muscles' NEMGs) and on the individual muscle's NEMGs. Box color had no effect on the TNEMG and on the seven muscles activities(p>0.05). When precision demand was required at the end point of lifts, the mean NEMG showed higher values than no precision demand conditions: TNEMG (14% increase) and medial deltoid(40% increase), biceps brachii(10% increase), lateral triceps(26% increase), latissimus dorsi(25% increase) muscles. Those increases showed more conspicuous as the box weight increased in the muscles of medial deltoid, lateral triceps, and latissimus dorsi.

A Non-invasive Measurement of Abdominal Pressure on Ambulatory Urodynamics Study Using Surface Electromyography (휴대용 요역동학 검사 시 근전도 신호를 이용한 복압측정 방법)

  • Kim, Keo-Sik;Song, Chul-Gyu;Seo, Jeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.132-140
    • /
    • 2008
  • Conventional rectal catheters which are used for the measurement of abdominal pressure can cause erroneous result affecting detrusor pressure, and the catheter itself is not comfortable to the patients. To reduce these problems, we invented a new method for measuring abdominal pressure in non invasive manner using surface electromyography (EMG) signals of the rectus abdominis muscle. Our results showed that the correlation coefficient and root mean square error (RMSE) between the measured abdominal pressures by the conventional rectal catheters and the estimated values by our proposed algorithm were $0.79{\pm}0.06$ and $0.10{\pm}0.07$, respectively. These findings suggest that the surface EMG of rectus abdominis muscle might be used indirectly for more convenient measurement of abdominal pressure on ambulatory urodynamic study.

Application of CSP Filter to Differentiate EEG Output with Variation of Muscle Activity in the Left and Right Arms (좌우 양팔의 근육 활성도 변화에 따른 EEG 출력 구분을 위한 CSP 필터의 적용)

  • Kang, Byung-Jun;Jeon, Bu-Il;Cho, Hyun-Chan
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.654-660
    • /
    • 2020
  • Through the output of brain waves during muscle operation, this paper checks whether it is possible to find characteristic vectors of brain waves that are capable of dividing left and right movements by extracting brain waves in specific areas of muscle signal output that include the motion of the left and right muscles or the will of the user within EEG signals, where uncertainties exist considerably. A typical surface EMG and noninvasive brain wave extraction method does not exist to distinguish whether the signal is a motion through the degree of ionization by internal neurotransmitter and the magnitude of electrical conductivity. In the case of joint and motor control through normal robot control systems or electrical signals, signals that can be controlled by the transmission and feedback control of specific signals can be identified. However, the human body lacks evidence to find the exact protocols between the brain and the muscles. Therefore, in this paper, efficiency is verified by utilizing the results of application of CSP (Common Spatial Pattern) filter to verify that the left-hand and right-hand signals can be extracted through brainwave analysis when the subject's behavior is performed. In addition, we propose ways to obtain data through experimental design for verification, to verify the change in results with or without filter application, and to increase the accuracy of the classification.

Development of a Health Bicycle for Improving the Muscle Strength of Lower Limb using MR Rotary Brake (MR 회전형 브레이크를 이용한 하지 근력 증진용 헬스 자전거 개발)

  • Yoon, Y.I.;Kwon, T.K.;Kim, D.W.;Kim, J.J.;Kim, N.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.832-839
    • /
    • 2007
  • In this study, a new bicycle system was developed to improve muscular strength using the Magneto-Rheological(MR) rotary brake. The friction load of the MR rotary brake is adjusted according to muscle strength of the subjects. The characteristic of muscular strength was studied with various friction loads of MR rotary brake. The friction load was occurred with the current, applied to the MR. rotary brake. Experiments was composed of several cycling trials for various friction loads. In training programs involving muscle improvement, it is necessary to confirm muscle activity and fatigue. To measure the muscle activity and fatigue, EMG signals of rectus femoris (RF), biceps femoris (BF), tensor fasciae latae (TFL), vastus lateralis (VL), vastus medialis (VAS), gastrocnemius (GAS), tibialis anterior (TA) and soleus (SOL) muscles were collected with surface electromyography and analyzed into time and frequency domain. The experimental results showed that the muscle activity according to the applied current to the MR rotary brake was significantly different. The more the current was applied, the higher value of the integrated EMG (IEMG) was obtained. Especially, the magnitude of IEMG of the RF, BF, TFL and VL varied in direct proportion to the current. However, there was not significant in the median frequency as the cycling time continue.

Comparison of Abdominal and Lumbar Multifidus Muscle Activity During Unilateral Hip Extension in Prone Position on the Floor and on a Round Foam Roll

  • Kim, Su-Jung;Park, Kyu-Nam;Ha, Sung-Min;Kwon, Oh-Yun;Kim, Hyun-Sook
    • Physical Therapy Korea
    • /
    • v.19 no.2
    • /
    • pp.80-86
    • /
    • 2012
  • The purpose of this study was to compare the muscle activity of the abdominal and lumbar multifidus during unilateral prone hip extension on the floor and on a round foam roll. Fifteen healthy participants were recruited. They were instructed to perform a unilateral hip extension on the floor and on a round foam roll in the prone position. Surface electromyography (EMG) signals were recorded from bilateral lumbar multifidus (LM), external oblique (EO), and internal oblique (IO) muscles. A paired t-test was used to compare muscle activity, with the level of significance set at ${\alpha}$=.05. The results showed that bilateral LM, EO, IO EMG activity during right-hip extension on a round foam roll was greater than that on the floor, and EMG activity of bilateral LM, right EO, and left IO during left-hip extension on a round foam roll was greater than that on the floor (p<.05). These findings suggest that the unilateral hip-extension exercise on a round foam roll can be used to activate the lumbar multifidus and abdominal oblique muscles and causes a different increasing pattern between the two lifting sides.

Strength Evaluation of Sin91e-Radius Total Knee Replacement (TKR) (인공무릎관절의 단축법위 회전시 근력정가)

  • Wan, Jin-Young;Sub, Kwak-Yi
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.484-489
    • /
    • 2004
  • Artificial joint replacement is one of the major surgical advances of the 21th century. The primary purpose of a TKA (Total Knee Arthroplasty) is to restore normal knee Auction. Therefore, ideally, a TKA should: (a) maintain the natural leverage of the knee joint muscles to ensure generating adequate knee muscle moments to accomplish daily tasks such as rising from a chair or climbing stairs;(b) allow the same range of motion as an complete knee; and (c) provide adequate knee joint stability. Four individuals (2 peoples after surgery one year and 2 peoples after surgery three years) participated in this study. All they were prescreened for health and functional status by the same surgeon who performed the operations. Two days of accommodation practice occurred prior to the actual strength testing. The isometric strength (KIN-COM III) of the quadriceps and hamstring were measured at 60$^\circ$ and 30$^\circ$ of knee flexion, respectively. During isokinetic concentric testing, the range of motion was between 10$^\circ$ to 80$^\circ$ of knee flexion (stand-to-sit) and extension (sit-to-stand). for a given test, the trial exhibiting maximum torque was analyzed. A 16-channel MYOPACTM EMG system (Run Technologies, Inc.) was used to collect the differential input surface electromyographic (EMG) signals of the vastus medialis (VM), vastus lateralis(VL), rectus femoris (RF) during sit-to-stand and stand-to-sit tests. Disposable electrodes (Blue SensorTM, Medicotest, Inc.) were used to collect the EMG signals. The results were as follows; 1. Less maximum concentric (16% and 21% less for 1 yew man and 3 years mm, respectively) and isometric (12% and 29%, respectively) quadriceps torque for both participants. 2.14% less maximum hamstrings concentric torque for 1 year man but 16% greater torque for 3 years mm. However, 1 year man had similar hamstring isometric peak torque for both knees. 3. Less quadriceps co-contraction by 1 year man except for the VM at 10$^\circ$-20$^\circ$ and 30$^\circ$-50$^\circ$ range of knee flexion.