• Title/Summary/Keyword: suprachiasmatic nucleus

Search Result 28, Processing Time 0.026 seconds

Bombesin Immunorectivtiy in Suprachiasmatic Nucleus in Rat and Mongolian Gerbil after Colchicine Treatment (Colchicine 투여 후 흰쥐와 모래쥐 시각교차위핵내 bombesin에 대한 면역조직화반응)

  • Kim Jin-Sang;Yi Seong-Joon
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.2
    • /
    • pp.115-122
    • /
    • 1999
  • This experiment was carried out to investigate the bombesin immunoreactivity in suprachiasmatic nucleus in rat and Mongolian gerbil hypothalamus after colchicine treatment and analyze the morphological difference between rat and Mongolian gerbil which is focused for experimental animal model of neuronal and circulatory diseases. The results were as followings. 1. The shape of suprachiasmatic nucleus was triangle in rat, but oval or kidney-shape in Mongolian gerbil 2. The suprachiasmatic nucleus devided into ventrolateral portion and dorsomedial portion in rat, but dorsolateral portion and ventromedial portion or superior portion and inferior portion in Mongolian gerbil. 3. The area of suprachiasmatic nucleus of rat was greater than one of Mongolian gerbil. 4. The bombesin immunoreactivity showed after colcichine treatment in rat and Mogolian gerbil suprachiasmatic nucleus. 5. The bombesin immunoreactivity was stronger in ventrolateral portion than in dorsomedial portion of suprachiasmatic nucleus in rat, but in ventromedial or inferior portion than in dorsolateral or superior portion of suprachiasmatic nucleus in Mongolian gerbil. 6. The bombesin immunoreactivity showed at the oval, ellipsoid or triangular neurons and varicose nerve terminals in ventrorateral portion of rat, and only nerve terminals in dorsomedial portion of rat suprachiasmatic nucleus. But the bombesin immunoreativity didn't show at neurons of Mongolian gerbil suprachiasmatic nucleus.

  • PDF

The postnatal distribution pattern of GABAergic terminals of the suprachiasmatic nucleus in rat (흰쥐 시각교차위핵(suprachiasmatic nucleus)의 출생직후 GABA성 신경종말의 분포양상)

  • yi, Seong-joon
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.4
    • /
    • pp.661-664
    • /
    • 2000
  • The present study was carried out to reveal the role of ${\gamma}$-aminobutylic acid(GABA) during postnatal period in rat. The suprachiasmatic nucleus(SCN) of hypothalamus has been known as the regulation center of circadian rhythm in the mammalians. In this study, we could find many GABAergic terminals in the SCN from day 1 to day 7 after birth. On the basis of these results, it can be said there are some kinds of inhibitory effects by GABA to the light stimulation of newborn rat.

  • PDF

Immunohistochemical study on some calcium binding proteins and neurotransmitters in suprachiasmatic nucleus of the Korean native goat (한국재래산양 시각교차위핵 내 몇 가지 칼슘결합단백질과 신경전달물질의 분포에 관한 면역조직화학적 연구)

  • Song, Seung-hoon;Lee, Heunshik S.;Lee, In-Se
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.2
    • /
    • pp.139-146
    • /
    • 2001
  • This study was carry out to identify the distribution of calcium binding proteins; calbindin(CB), calretinin(CR) and parvalbumin(PA) in the suprachiasmatic nucleus(SCN) of the Korean native goat by immunohistochemical methods. The expression of substance P(SP), calcitonin gene-related peptide(CG-RP), neuropeptide Y(NPY), vasoactive intestinal polypeptide(VIP) and galanin(GAL) were also investigated. CR-immunoreactivity was found in both of the cell bodies and fibers in the SCN, which the CB-immunoreactivity was observed only in the fibers. The immunoreactivity for VIP was observed in both the cell bodies and fibers, but SP-, NPY, GAL-immunoreactivities were only found in the fibers. CGRP-immunoreactivity was not seen in cell body and fibers. These results suggest that VIP, SP, NPY and GAL play a neuromodulatory or/ and neurotransmitter roles in cooperation with CB and CR in SCN of the Korean native goat.

  • PDF

Morphological study on suprachiasmatic nucleus of the Korean native goat (한국재래산양 시각교차위핵에 관한 형태학적 연구)

  • Song, Seung-hoon;Lee, Heungshik S.;Lee, In-se;Hwang, In-koo;Lee, Choong-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.4
    • /
    • pp.665-670
    • /
    • 2000
  • The present study was undertaken to investigate the morphological characteristics of the suprachiasmatic nucleus (SCN) of the Korean native goat by cresyl violet stain. The SCN was located ventrolateral to the third ventricle and dorsal to the optic chiasm. This nucleus was showed carrot form in longitudinal section. Its size was 1.8 mm in length, 0.9 mm in maximum height and 1.6 mm in maximum width. In coronal sections, the SCN shaped very thin plate in rostral part, but it was changed to sweet-potato form in middle part, and ornamental jade form in caudal part. The size of SCN was larger in caudal part than in rostral part. The size of the neuron of SCN was about $10{\mu}m$ in diameter with round or oval shape. The boundary of SCN was not firmly defined in caudal part because the neurons were dispersed into the hypothalamic region. It is concluded that the SCN of the Korean native goat has a morphological characteristics.

  • PDF

Neuroanatomical studies on acupoints(SJ5, Pe6, SP6 and GB39) projecting to the brain area related to dimentia using neural tracer, pseudorabies virus in mouse (치매와 관련된 뇌영역에 투사되는 경혈(외관(SJ5), 내관(Pe6), 삼음교(SP6) 및 현종(GB39))의 탐색에 관한 신경해부학적 연구)

  • Lee, Chang-hyun;Kim, Tae-heon;Lee, Sang-ryong;Yook, Tae-han
    • Journal of Acupuncture Research
    • /
    • v.20 no.6
    • /
    • pp.168-181
    • /
    • 2003
  • Objective: The neuroanatomical studies on the acupoints(Waiguan(SJ5), Neiguan(Pe6), Sanyinjiao(SP6) and Xuanzhong(GB39)) projecting to the brain area related to dimentia using the pseudorabies virus (PRV-Ba strain) in the mouse was described. Methods: The common locations of the brain projecting to the Waiguan, Neiguan, Sanyinjiao and Xuanzhong following injection of PRV-Ba were histochemically observed. The results were as follows Results : 1. PRV-Ba labeled areas in medulla oblongata, pons and midbrain were similar to 4 acupoints, theses areas were related to autonomic center. 2. PRV-Ba labeled areas in diencephalon and cebrebrum were differently labeled according to the acupoints. 3. CNS labeled areas in Waiguan were dense labeled in CA1-3 area of hippocampus, amygdaloid nucleus, insular cortex, parietal cortex, entorhinal cortex, perirhinal cortex, dorsal endopiriform cortex, piriform cortex, amygdalopiriform transition and bed n. of stria terminalis. 4. CNS labeled areas in Neiguan were dense labeled in insular cortex, amygdaloid nucleus, parietal cortex, entorhinal cortex, perirhinal cortex, dorsal endopiriform cortex, piriform cortex, amygdalopiriform transition and bed n. of stria terminalis. 5. CNS labeled areas in Sanyinjiao were dense labeled in CA1-3 of hippocampus, suprachiasmatic n., dorsal endopiriform cortex, piriform cortex and bed n. of stria terminalis. 6. CNS labeled areas in Xuanzhong were dense labeled in suprachiasmatic n., dorsal endopiriform cortex and piriform cortex. Conclusions : Following these results, labeled acupoints in brain areas related to dimentia are Waiguan and Neiguan. Common labeled areas are amygdaloid n., entorhinal cortex, amygdaopiriform transition, bed n. stria terminalis and perirhinal cortex.

  • PDF

Rhythms and Biological Clock (리듬과 생체시계)

  • Choi Donchan
    • Development and Reproduction
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Most animals, including human beings, live in a cyclic pattern of lift that is influenced by the ambient changes of environment. The regular changes occurred by rotation of the Earth itself its revolving around the Sun, and the local environment, are reflected by the distinct behavior in the living organisms. These regular changes of environment have been imprinted into the genes within the living organisms through the evolutionary process over a long period of time. The genes are expressed by rhythms during the process of fetal development followed by growth. The environmental modifications ultimately are settled in genes, serving as a biological clock that is located putatively in the hypothalamus. Thus the biological clock governs a large number of rhythms and affects the time of birth and death lift expectancy, behavior, physiology, cell division, biochemical reaction, etc. The rhythms are readjusted to the changes of environmental cues. The biological clock has the great advantage of predicting and preparing the regular changes of environment.

  • PDF

Studies on the Relationship of the Central Neural Pathways to the Urinary Bladder and Wijung($BL_{40}$) (방광(膀胱)과 위중(委中)의 중추신경로와의 연계성에 관한 연구)

  • Lee, Chang-Hyun;Kim, Ho;Lee, Kwang-Gyu;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.805-817
    • /
    • 2009
  • This study was to investigate central localization of neurons projecting to the urinary bladder and urinary bladder-related acupoints(Wijung, $BL_{40}$) and neurons of immunoreactive to hormones and hormone receptors regulating urinary bladder function by using peudorabies virus(PRV). In this experiment, Bartha's strain of pseudorabies virus was used in rats to trace central localization of urinary bladder-related neurons and urinary bladder-related acupoints($BL_{40}$) which can regulate urinary system. PRV was injected into the urinary bladder and acupoints($BL_{40}$) related urinary system. After six days survival of rats, mainly common labeled neurons projecting to the urinary bladder and urinary bladder-related acupoints were identified in spinal cord, medulla, pons and diencephalon by PRV immunohistochemical staining method. First-order PRV labeled neurons projecting to urinary bladder and urinary bladder-related acupoints were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled preganglionic neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in the lateral horn area(sacral parasympathetic nucleus and intermediolateral nucleus), lamina V-X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting to urinary bladder and Wijung($BL_{40}$) was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus of tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, Barrington's nucleus and periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the paraventricular nucleus and a few ones were in the lateral hypothalamic nucleus, posterior hypothalamic nucleus, ventromedial hypothalamic nucleus, arcuate nucleus, median eminence, perifornical nucleus, periventricular nucleus and suprachiasmatic nucleus. In cerebral cortex, PRV labeled neurons were marked mostly in the frontal cortex, 1,2 area, hind limb area, agranular insular cortex. Immunoreactive neurons to Corticotropin releasiing factor(CRF), Corticotropin releasiing factor-receptor(CRF-R), c-fos and serotonin were a part of labeled areas among the virus-labeled neurons of urinary bladder and Wijung($BL_{40}$). The commonly labeled areas were nucleus tractus solitarius, area postrema, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), locus coeruleus, A5 cell group, Barrington,s nucleus, arcuate nucleus, paraventricular nucleus, frontal cortex 1, 2 area, hind limb, and perirhinal(agranular insular) cortex. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of urinary bladder-relate organs and it was revealed by tracing PRV labeled neurons projecting urinary bladder and urinary bladder-related acupoints. These commonly labeled areas often overlap with the neurons connected with hormones and hormone receptors related to urination.

Localization of the Neurons Projecting to the Gallbladder Meridian (족소양담경(足少陽膽經)에서 투사(投射)되는 신경원(神經元)의 표지부위(標識部位)에 대한 연구(硏究))

  • Ryuk Sang-Won;Lee Kwang-Gyu;Lee Sang-Ryoung;Kim Jum-Young;Lee Chang-Hyun;Lee Bong-Hee
    • Korean Journal of Acupuncture
    • /
    • v.17 no.1
    • /
    • pp.101-121
    • /
    • 2000
  • The purpose of this morphological studies was to investigate the relation to the meridian, acupoint and nerve. The common locations of the spinal cord and brain projecting to the the gallbladder, GB34 and common peroneal nerve were observed following injection of transsynaptic neurotropic virus, pseudorabies virus(PRV), into the gallbladder, GB34 and common peroneal nerve of the rabbit. After survival times of 96 hours following injection of PRV, the thirty rabbits were perfused, and their spinal cord and brain were frozen sectioned($30{\mu}m$). These sections were stained by PRV immunohistochemical staining method, and observed with light microscope. The results were as follows: 1. In spinal cord, PRV labeled neurons projecting to the gallbladder, GB34 and common peroneal nerve were founded in thoracic, lumbar and sacral spinal segments. Densely labeled areas of each spinal cord segment were founded in lamina V, VII, X, intermediolateral nucleus and dorsal nucleus. 2. In medulla oblongata, The PRV labeled neurons projecting to the gallbladder, GB34 and common peroneal nerve were founded in the A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nucleus, rostroventrolateral reticular nucleus, medullary reticular nucleus, dorsal motor nucleus of vagus nerve, nucleus tractus solitarius, raphe obscurus nucleus, raphe pallidus nucleus, raphe magnus nucleus, gigantocellular nucleus, lateral paragigantocellular nucleus, principal sensory trigeminal nucleus and spinal trigeminal nucleus. 3. In Pons, PRV labeled neurons were parabrachial nucleus, Kolliker-Fuse nucleus and cochlear nucleus. 4. In midbrain, PRV labeled neurons were founded in central gray matter and substantia nigra. 5. In diencephalon, PRV labeled neurons were founded in lateral hypothalamic nucleus, suprachiasmatic nucleus and paraventricular hypothalamic nucleus. 6. In cerebral cortex, PRV labeled neuron were founded in hind limb area.This results suggest that PRV labeled common areas of the spinal cord projecting to the gallbladder, GB34 and common peroneal nerve may be first-order neurons related to the somatic sensory, viscero-somatic sensory and symapathetic preganglionic neurons, and PRV labeled common area of the brain may be first, second and third-order neurons response to the movement of smooth muscle in gallbladder and blood vessels.These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory system monitoring the internal environment, including both visceral sensation and various chemical and physical qualities of the bloodstream. The present morphological results provide that gallbladder meridian and acupoint may be related to the central autonomic pathways.

  • PDF

Neurotropism and Expression Pattern of lacZ Inserted PRV-Bartha in Geniculohypothalamic Tract Tracing (lacZ가 삽입된 PRV-Bartha 종의 신경친화성 및 무릎시상하부로 추적시 발현양상 분석)

  • Kim, Jin-Sang;Park, Eun-Se;Cheon, Song-Hee;Kim, Min-Hee;Bang, Hyun-Soo;Kwon, Young-Shil;Lee, Bong-Hee;Kim, Young-Chul
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.403-409
    • /
    • 2006
  • To localize the connection between intergeniculate nucleus and suprachisasmatic nucleus through geniculohypothalamic tract in postnatal mongolian gerbil, we injected lacZ inserted PRV-Bartha strain into suprachiasrnatic nucleus and tried to immunostain against it with Rb134 and mouse $anti-{\beta}-galactosidase$. The numbers of immunoreactive neurons in intergeniculate leaflet were $8{\pm}3.2$ in P1 Period, $10{\pm}4.1$ in P3 Period and $13{\pm}6.2$ in P7 Period, and was statistically significant (p<0.05) and had tendency to increase with time consuming. The results showed that intergeniculate leaflet had projected some axons into suprachiasrnatic nucleus through geniculohyptothalamic tract in postnatal mongolian gerbil. But we could not exclude the possibility of direct projections from dorsal and ventral geniculate nuclei into suprachisamatic nucleus completely.

Distribution of growth hormone-releasing factor- and somatostatin-immunoreactive neurons in the hypothalamus of the Korean squirrel(sciurus vulgalis coreae) (청서 시상하부의 growth hormone-releasing factor 및 somatostatin 면역반응신경세포의 분포)

  • Jeong, Young-gil;Son, Hwa-young;Yoon, Won-kee;Kim, Kil-soo;Won, Moo-ho;Ryu, Si-yun;Cho, Sung-whan;Kim, Moo-kang
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.4
    • /
    • pp.671-681
    • /
    • 1995
  • This study was attempted to investigate the topographical distribution, shape and immunoreactivity of growth hormone-releasing factor(GRF)- and somatostatin(SOM)-immunoreactive neurons in the hypothalamus of the Korean squirrels(Sciurus vulgalis coreae). For the light microscopical examination of immunohistochemistry, the brains were fixed with 4% paraformaldehyde solution by means of intracardiac perfusion. And the frozen sections($40{\mu}m$ thick) were stained immunohistochemically by ABC method. Distribution of GRF immunoreactive neurons($12-17{\mu}m$) was highest in the paraventricular nucleus, moderate in the periventricular and supraoptic nuclei, and low in the arcuate nucleus and lateral hypothalamic area. Their immunoreactive fibers were found very high in the median eminence, moderately in the supraoptic, paraventricular and periventricular nuclei, and low in the arcuate nucleus and lateral hypothalamic area. SOM immunoreactive perikarya($14-18{\mu}m$) were found moderately in the periventricular nucleus near the subependymal layer of the third ventricle, and low in the arcuate and suprachiasmatic nuclei. SOM immunoreactive fibers were found high in the median eminence, and moderately or low in the arcuate and periventricular nuclei.

  • PDF