Studies on the Relationship of the Central Neural Pathways to the Urinary Bladder and Wijung($BL_{40}$)

방광(膀胱)과 위중(委中)의 중추신경로와의 연계성에 관한 연구

  • Lee, Chang-Hyun (Department of Anatomy, College of Oriental Medicine, Woosuk University) ;
  • Kim, Ho (Department of Pathology, College of Oriental Medicine, Woosuk University) ;
  • Lee, Kwang-Gyu (Department of Pathology, College of Oriental Medicine, Woosuk University) ;
  • Jeong, Han-Sol (Department of Pathology, College of Oriental Medicine, Woosuk University)
  • 이창현 (우석대학교 한의과대학 해부학교실) ;
  • 김호 (우석대학교 한의과대학 병리학교실) ;
  • 이광규 (우석대학교 한의과대학 병리학교실) ;
  • 정한솔 (우석대학교 한의과대학 병리학교실)
  • Published : 2009.08.25

Abstract

This study was to investigate central localization of neurons projecting to the urinary bladder and urinary bladder-related acupoints(Wijung, $BL_{40}$) and neurons of immunoreactive to hormones and hormone receptors regulating urinary bladder function by using peudorabies virus(PRV). In this experiment, Bartha's strain of pseudorabies virus was used in rats to trace central localization of urinary bladder-related neurons and urinary bladder-related acupoints($BL_{40}$) which can regulate urinary system. PRV was injected into the urinary bladder and acupoints($BL_{40}$) related urinary system. After six days survival of rats, mainly common labeled neurons projecting to the urinary bladder and urinary bladder-related acupoints were identified in spinal cord, medulla, pons and diencephalon by PRV immunohistochemical staining method. First-order PRV labeled neurons projecting to urinary bladder and urinary bladder-related acupoints were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled preganglionic neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in the lateral horn area(sacral parasympathetic nucleus and intermediolateral nucleus), lamina V-X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting to urinary bladder and Wijung($BL_{40}$) was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus of tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, Barrington's nucleus and periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the paraventricular nucleus and a few ones were in the lateral hypothalamic nucleus, posterior hypothalamic nucleus, ventromedial hypothalamic nucleus, arcuate nucleus, median eminence, perifornical nucleus, periventricular nucleus and suprachiasmatic nucleus. In cerebral cortex, PRV labeled neurons were marked mostly in the frontal cortex, 1,2 area, hind limb area, agranular insular cortex. Immunoreactive neurons to Corticotropin releasiing factor(CRF), Corticotropin releasiing factor-receptor(CRF-R), c-fos and serotonin were a part of labeled areas among the virus-labeled neurons of urinary bladder and Wijung($BL_{40}$). The commonly labeled areas were nucleus tractus solitarius, area postrema, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), locus coeruleus, A5 cell group, Barrington,s nucleus, arcuate nucleus, paraventricular nucleus, frontal cortex 1, 2 area, hind limb, and perirhinal(agranular insular) cortex. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of urinary bladder-relate organs and it was revealed by tracing PRV labeled neurons projecting urinary bladder and urinary bladder-related acupoints. These commonly labeled areas often overlap with the neurons connected with hormones and hormone receptors related to urination.

Keywords

References

  1. 박희준. 경락연구의 현황. 과학사상, pp 148-160, 1993
  2. 中谷義雄. 良導絡的全貌, 漢方的臨床, 3(7):54-60, 1956
  3. 孫平生, 趙玉卓, 李玉蘭, 閻清連, 劉宏. 定量低頻聲信息沿人體体體表經絡经络船路傳道特異性的對比觀察. 遼寧中醫雜誌, 9:68-74, 1993
  4. H.U. Xiang-Long, X.U. Jin-Sen, Y.E. Lei, YANG Jie, WANGPei-Qing, W.U. Bao-Hua. Elicitation of infrared radianttrack along meridian courses over human body surface bylocal heating. Journal of Infrared and Millimeter Waves21(1):6-11, 2002
  5. P. de Vernejoul, J.C. Darras, C. Beguin, J.B. Cazalaa, G.Daury, J. de Vernejoul. Isotopic approach to thevisualization of acupuncture meridians. Agressologie, Nov25(10):1107-1111, 1984
  6. Elfvin, L.G., Lindh, B. A study of the extrinsic innervationof the guinea pig pylorus with the horseradish peroxidasetracing technique. J Comp Neurol 208: 317-324, 1982 https://doi.org/10.1002/cne.902080402
  7. Vander Horst, V.G., Meijer, E., Holstege, G. Estrogenreceptor-alpha immunoreactivity in parasympatheticpreganglionic neurons innervating the bladder in the adultovariectomized cat. Neurosci Lett 298: 147-150, 2001 https://doi.org/10.1016/S0304-3940(00)01713-4
  8. Card, J.P., Rinaman, L., Schwaber, J.S., Miselis, R.R.,Whealy, M.E., Robbins, A.K., et al. Neurotropic propertiesof pseudorabies virus: Uptake and transneuronal passagein the rat central nervous system. J Neurosci10(6):1976-1994, 1990
  9. Norgren, R.B.Jr., Lehman, M.N. Herpes simplex virus as atransneuronal tracer. Neurosci Biobehav Rev 22(6):695-708,1998 https://doi.org/10.1016/S0149-7634(98)00008-6
  10. 전국한의과대학 침구경혈학교실. 침구학(상). 서울, 집문당, p 503, 1998
  11. Hsu, S.M., Raine, L., Fanger, H. Use of avidin-biotinperoxidasecomplex(ABC) in immunoperoxidasetechniques: A comparison between ABC and unlabeledantibody(PAP) procedures. J Histochem Cytochem 29:577-580, 1981 https://doi.org/10.1177/29.4.6166661
  12. Paxinos, G., Watson, C. The rat brain in stereotaxiccoordinates. 2nd Ed. Sandiego: Academic Press NC. 1986
  13. 지규용. 새로운 한의학 터닥기(II). 서울, 일중사, p 329, 2004
  14. 김완희. 한의학 원론. 서울, 성보사, pp 135-138, 2001
  15. The Academy of Traditional Chinese Medicine. An outlineof Chinese acupuncture. Peking: Foreing Languages Press.1975
  16. 金達鎬. 黃帝內經注解補注靈樞全. 서울, 圖書出版醫聖堂, p 726, 886, 976, 2002
  17. 金達鎬. 黃帝內經注解補注素問全, 서울, 圖書出版醫聖堂, p 224, 2001
  18. 全國韓醫科大學鍼灸學敎室:鍼灸學(上). 서울, 集文堂, pp184-205, 1991
  19. Ogata, H., Matsumoto, T., Tsukahara, H. Electrical skinresistance changes in meridians during ophthalmic surgerywith local anesthesia. Am J Chin Med. 11(1-4):130-136,123-129, 1983 https://doi.org/10.1142/S0192415X83000215
  20. Nadelhaft, I., Booth, A.M. The location and morphology ofpreganglionic neurons and the distribution of visceralafferents from the rat pelvic nerve: a horseradishperoxidase study. J Comp Neurol 226: 238-245, 1984 https://doi.org/10.1002/cne.902260207
  21. Nadelhaft, I., Vera, P.L., Card, J.P., Miselis, R.R. Centralnervous system neurons labeled following the injection ofpseudorabies virus into the rat urinary bladder.Neuroscience Lett 143: 271-274, 1992 https://doi.org/10.1016/0304-3940(92)90281-B
  22. de Groat, W.C. Nervous control of the urinary bladder ofthe cat. Brain Research 87: 201-211, 1975 https://doi.org/10.1016/0006-8993(75)90417-5
  23. Snell, R.S. Clinical neuroanatomy for medical students. 3rd ed. Little, Brown and Company, Inc. pp 459-490, 1992
  24. Hermann, G.E., McCann, M.J., Rogers, R.C. Activation ofthe bed nucleus of the stria terminalis increases gastricmotility in the rat. J Auton Nerv Sys 30: 123-128, 1990 https://doi.org/10.1016/0165-1838(90)90135-6
  25. Ewart, W.R., Jones, M.V., King, B.F. Central origin of vagalnerve fibers innervating the fundus and corpus of thestomach in rat. J Auton Nerv Sys 25: 219-231, 1988 https://doi.org/10.1016/0165-1838(88)90026-4
  26. Okumura, T., Namiki, M. Vagal motor neurons innervatingthe stomach are site-specifically organized in the dorsalmotor nucleus of the vagus nerve in rats. J Auton NervSys 29: 157-162, 1990 https://doi.org/10.1016/0165-1838(90)90181-H
  27. Shapiro, R.E., Miselis, R.R. The central neural connectionsof the area postrema of the rat. J Comp Neruol 234:344-364, 1985a https://doi.org/10.1002/cne.902340306
  28. Shapiro, R.E., Miselis, R.R. The central organization of thevagus nerve innervating the stomach of the rat. J CompNeurol 238: 473-488, 1985b https://doi.org/10.1002/cne.902380411
  29. Rinaman, L., Card, J.P., Schwaber, J.S., Miselis, R.R.Ultrastructural demonstration of a gastric monosynapticvagal circuit in the nucleus of the solitary tract in rat. JNeurosci 9(6):1985-1996, 1989 https://doi.org/10.1523/JNEUROSCI.09-06-01985.1989
  30. Card, J.P., Rinaman, L., Schwaber, J.S., Miselis, R.R.,Whealy, M.E., Robbins, A.K., et al. Neurotropic propertiesof pseudorabies virus: Uptake and transneuronal passagein the rat central nervous system. J Neurosci10(6):1976-1994, 1990
  31. Card, J.P., Enquist, L.W. Use of pseudorabies virus fordefinition of synaptically linked neurons. Methods MolGenet 4: 363-382, 1994
  32. Strack, A.M., Sawyer, W.B., Platt, K.B., Loewy, A.D. CNScell groups regulating the sympathetic outflow to adrenalgland as revealed by transneuronal cell body labeling withpseudorabies virus. Brain Res 491: 274-296, 1989 https://doi.org/10.1016/0006-8993(89)90063-2
  33. Marson, L., Platt, K.B., McKenna, K.E. Central nervoussystem innervation of the penis as revealed by thetransneuronal transport of pseudorabies virus. Neurosci 55:263-281, 1993 https://doi.org/10.1016/0306-4522(93)90471-Q
  34. Loewy, A.D., Haxhiu, M.A. CNS cell groups projecting topancreatic parasympathetic preganglionic neurons. BrainRes 620: 323-330, 1993 https://doi.org/10.1016/0006-8993(93)90174-L
  35. Schramm, L.P., Strack, A.M., Platt, K.B., Loewy, A.D.Peripheral and central pathways regulating the kidney: Astudy using pseudorabies virus. Brain Res 616: 251-262,1993 https://doi.org/10.1016/0006-8993(93)90216-A
  36. Standish, A., Enquist, L.W., Schwaber, J.S. Innervation ofthe heart and its medullary origin of adrenal gland byviral tracing. Science 263: 232-234, 1994 https://doi.org/10.1126/science.8284675
  37. 강창수, 이상룡, 이창현, 남용재, 이광규. 대장과 관련된 경혈들의 신경해부학적 연구. 대한침구학회지 17: 95-117, 2000
  38. Lee, C.H., Jung, H.S., Lee, T.Y., Lee, S.Y., Yuk, S.W., Lee,K.G., et al. Studies of the central neural pathways to thestomach and Zusanli(ST36). Am J Chin Med 29(2):211-220,2001 https://doi.org/10.1142/S0192415X01000241
  39. Insoo Jang, Kiho Cho, Sangkwan Moon, Changnam Ko,Bonghee Lee, Byungmoon Ko, et al. A study on the centralneural pathway of the heart, Nei-kuan(EH-6) andShen-Men(He-7) with neural tracer in rats. Am J Chin Med31(4):591-609, 2003 https://doi.org/10.1142/S0192415X03001314
  40. Williams, C.L., Burks, T.F. Stress, opioids, and gastrointestinal transit. In: Neuropeptides and Stress, Newyork: Springer-Verlag, 1988
  41. Monnikes, M., Schmidt, B.G., Raybould, H.E. CRF in theparaventricular nucleus mediate gastric and colonic motorresponse to restraint stress. Am J Physiol 262: 137-143,1992
  42. Klausner, A.P., Steers, W.D. Corticotropin releasing factor: amediator of emotional influences on bladder function. JUrol. 172(6 Pt 2):2570-2573, 2004 https://doi.org/10.1097/01.ju.0000144142.26242.f3
  43. 李相龍. 經穴學. 서울, 청흥(지상사), p 448, 2007
  44. Burstein, R., Wang, J., Elde, R.P., Giesler, Jr.G. Neurons inthe sacral parasympathetic nucleus that project to thehypothalamus do not also project through the pelvic nerve: a double labeling study combining Fluoro-Gold andcholera toxin B in the rat. Brain Res 506: 159-165, 1990 https://doi.org/10.1016/0006-8993(90)91214-2
  45. Hosoya, Y., Nadelhaft, I., Wang, D., Kohno, K.Thoracolumbar sympathetic preganglionic neurones in thedorsal commissural nucleus of the male rat : animmunohistochelical stusy using retrograde labeling ofcholera toxin subunit B. Exp Brain Res 98: 21-30, 1994
  46. Papka, R.E., McCurdy, J.R., Williams, S.J., Mayer, B.,Marson, L., Platt, K.B. Parasympathetic preganglionicneurons in the spinal cord involved in uterine innervationare cholinergic and nitric oxide-containing. Anat Rec 241:554-562, 1995 https://doi.org/10.1002/ar.1092410413
  47. Nahin, R.L., Madsen, A.M., Giesler, G.J. Anatomical andphysiological studies of the gray matter surrounding thecentral canal. J Comp Neurol 220: 321-335, 1983 https://doi.org/10.1002/cne.902200306
  48. Burstein, R., Cliffer, K.D., Giesler, G.J.Jr. Directsomato-sensory projections from the spinal cord to thehypothalamus and telencephalon. J Neurosci 7: 4159 4164,1987 https://doi.org/10.1523/JNEUROSCI.07-12-04159.1987
  49. Burstein, R., Dado, R., Giesler, G.J.Jr. The cells of origin ofthe spinothalamic tract of the rat: A quantitativereexamination. Brain Res 511: 329-337, 1990 https://doi.org/10.1016/0006-8993(90)90179-F
  50. Hofstetter, C.P., Card, J.P., Olson, L. A spinal cord pathwayconnecting primary afferents to the segmental sympatheticout flow system. Experimental Neurology 194: 128-138,2005 https://doi.org/10.1016/j.expneurol.2005.01.028
  51. Mesulam, M.M., Brushart, T.M. Transganglionic andanterograde transport of horseradish peroxidase acrossdorsal root ganglia: a tetramethylbenzidine method fortracing central sensory connections of muscles andperipheral nerves. Neuroscience 4: 1107-1117, 1979 https://doi.org/10.1016/0306-4522(79)90192-1
  52. Ciriello, J., Calaresu, Fr. central projections of afferent renalfibers in the rat: an anterograsde transport study ofhorseradish peroxidase. J Auton Nerv syst 8: 273-285, 1983 https://doi.org/10.1016/0165-1838(83)90110-8
  53. Neuhuber, W.L., Sandoz, P.A., Fryscak, T. The centralprojections of primary afferent neurons of greatersplanchnic and intercostal nerves in the rat. a horseradishperoxidase study. Anat Embryol(Berl) 174: 123-144, 1986 https://doi.org/10.1007/BF00318344
  54. 王肇普. 臨床實用點穴療法, 北京, 中國古籍出版社, pp 69-70,1989
  55. Strack, A.M., Sawyer, W.B., Hughes, J.H., Platt, K.B.,Loewy, A.D. A general pattern of CNS innervation of thesympathetic outflow demonstrated by transneuronalpseudorabies viral infections. Brain Res 491: 156-162, 1989 https://doi.org/10.1016/0006-8993(89)90098-X
  56. Nadelhaft, I. and Devenyi, C. Pontine micturition center inrat revealed by retrograde transport of rhodamine-labelledbeads injected into sacral intermediolateral column. socNeurosci Abstr, 13: 734, 1987
  57. Kruse, M.N., Noto, H., Roppolo, J.R., de Groat, W.C.Pontine control of the urinary bladder and externalurethral sphincter in the rat, brain Res, pp 182-190, 1990 https://doi.org/10.1016/0006-8993(90)91758-9
  58. Griffiths, D., Holstege, G., Dalm, E., Wall, H. Control andcoordination of bladder and urethral function in thebrainstem of the cat. Neurology and Urodynamics 9: 63-82,1990 https://doi.org/10.1002/nau.1930090108
  59. Loewy, A.D., Saper, C.B., Baker, R.P. Descendingprojections from pontine micturition center. Brain Res 172:533-538, 1997 https://doi.org/10.1016/0006-8993(79)90584-5
  60. Pavcovich, L.A., Yang, M., Miselis, R.R., Valentino, R.J.Novel role for pontine micturition center, Barrington,snucleus: evidence for coordination of colonic and forebrainactivity. Brain Res 784: 355-361, 1998 https://doi.org/10.1016/S0006-8993(97)01178-5
  61. Roychowdhury, S.M., Fields, H.L. Endogenous opiodsacting at a medullary-opiod receptor contribute to thebehavioral antinociception produced by GABA antagonismin the midbrain periaqueductal gray. Neuroscience 74:863-872, 1996 https://doi.org/10.1016/0306-4522(96)00180-7
  62. Loewy, A.D., Wallach, J.H., McKellar, S. Efferentconnections of the ventral medulla oblongata in the rat.Brain Res Rev 3: 63-80, 1981 https://doi.org/10.1016/0165-0173(81)90012-6
  63. Vale, W., Spiess, J., Rivier, C., Rivier, J. Characterization ofa 41-residue ovine hypothalamic peptide that stimulatessecretion of corticotropin and $\beta$-endorphin. Science 213:1394-1397, 1981 https://doi.org/10.1126/science.6267699
  64. Fisher, L.A., Rivier, J., Rivier, C., Spiess, J., Vale, W.,Brown, M.R. Corticotropin-releasing factor: central effectson mean arterial blood pressure and heart rate in rats.Endocrinology 110: 2222-2224, 1982 https://doi.org/10.1210/endo-110-6-2222
  65. Brown, M.R., Fisher, L.A., Webb, V., Vale, W.W., Rivier,J.E. Corticotropin-releasing factor: a physiologic regulatorof adrenal epinephrine secretion. Brain Res. 328: 355-357,1985 https://doi.org/10.1016/0006-8993(85)91048-0
  66. Hisano, S., Fukui, Y., Chikamori-Aoyama, M., Aizawa, T.,Shibasaki, T. Reciprocal synaptic relations betweenCRF-immunoreactive- and TRH-immunoreactive neuronsin the paraventricular nucleus of the rat hypothalamus.Brain Res. 620: 343-346, 1993 https://doi.org/10.1016/0006-8993(93)90178-P
  67. Imaki, T., Katsumata, H., Miyata, M., Naruse, M., Imaki, J.,Minami, S. Expression of corticotropin-releasing hormonetype 1 receptor in parventricular nucleus after acute stress.Neuroendocrinology 73: 293-301, 2001 https://doi.org/10.1159/000054646
  68. Swiergiel, A.H., Takahashi, L.K., Rubin, W.W., Kalin, N.H.Antagonism of corticotropin-releasing factor receptors inthe locus coeruleus attenuates shock-induced freezing inrats. Brain Res. 587: 253-268, 1992
  69. Klausner, A.P., Streng, T., Na, Y.G., Raju, J., Batts, T.W.,Tuttle, J.B., et al. The role of corticotropin releasing factorand its antagonist, astressin, on micturition in the rat.Auton Neurosci. 123(1-2):26-35, 2005 https://doi.org/10.1016/j.autneu.2005.08.003
  70. Klausner, A.P., Steers, W.D. Corticotropin releasing factor: amediator of emotional influences on bladder function. J Urol. 172(6 Pt 2):2570-2573, 2004 https://doi.org/10.1097/01.ju.0000144142.26242.f3
  71. Morgan, J.I., Cohen, D.R., Hempstead, J.L., Curran, T.Mapping patterns of c-fos expression in the centralnervous system after seizure, science 237: 192-197, 1987 https://doi.org/10.1126/science.3037702
  72. Park, M., Kim, J., Bae, Y., Son, B., Park, Y., Lee, B., et al.CNS innervation of the urinary bladder demonstrated byimmunohistochemical study for c-fos and pseudorabiesvirus. J Korean Med Sci. 12(4):340-352, 1997 https://doi.org/10.3346/jkms.1997.12.4.340
  73. Burgard, E.C., Fraser, M.O., Thor, K.B. Serotonergicmodulation of bladder afferent pathways. Urology62(supplement 4A):10-15, 2003
  74. Skagerberg, G., Bjorklund, A. Topographic principles in thespinal projections of serotonergic and non-serotonergicbrainstem neurons in the rat. Neuroscience 154: 445-480,1985 https://doi.org/10.1016/0306-4522(85)90225-8
  75. Kojima, M., Takeuchi, Y., Goto, M., et al.Immunohistochemical study on the localization ofserotonin fibers and terminals in the spinal cord of themonkey(Macaca fuscata). Cell tissue Res 229: 23-36. 1983 https://doi.org/10.1007/BF00217878
  76. Bowker, R.M., Westlund, K.N., Coulter, J.D. Origins ofserotoninergic projections to the spinal cord in rat: animmunocytochemical-retrograde transport study. Brain Res226: 187-199, 1981 https://doi.org/10.1016/0006-8993(81)91092-1
  77. Thor, K.B., Nickolaus, S., Helke, C.J. Autoradiographiclocalization of 5-hydroxytryptamine1A,5-hydroxytryptamine1B and 5-hydroxytryptamine1C/2binding sites in the rat spinal cord. neuroscience 55:235-252, 1993 https://doi.org/10.1016/0306-4522(93)90469-V
  78. De Groat, W.C. Influence of central serotonergicmechanisms on lower urinary tract function. Urology59(supplement 1):30-36, 2002