• Title/Summary/Keyword: suppressing activity

Search Result 444, Processing Time 0.042 seconds

Inhibition of LPA5 Activity Provides Long-Term Neuroprotection in Mice with Brain Ischemic Stroke

  • Sapkota, Arjun;Park, Sung Jean;Choi, Ji Woong
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.512-518
    • /
    • 2020
  • Stroke is a leading cause of long-term disability in ischemic survivors who are suffering from motor, cognitive, and memory impairment. Previously, we have reported suppressing LPA5 activity with its specific antagonist can attenuate acute brain injuries after ischemic stroke. However, it is unclear whether suppressing LPA5 activity can also attenuate chronic brain injuries after ischemic stroke. Here, we explored whether effects of LPA5 antagonist, TCLPA5, could persist a longer time after brain ischemic stroke using a mouse model challenged with tMCAO. TCLPA5 was administered to mice every day for 3 days, starting from the time immediately after reperfusion. TCLPA5 administration improved neurological function up to 21 days after tMCAO challenge. It also reduced brain tissue loss and cell apoptosis in mice at 21 days after tMCAO challenge. Such long-term neuroprotection of TCLPA5 was associated with enhanced neurogenesis and angiogenesis in post-ischemic brain, along with upregulated expression levels of vascular endothelial growth factor. Collectively, results of the current study indicates that suppressing LPA5 activity can provide long-term neuroprotection to mice with brain ischemic stroke.

Mangiferin inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 expression and cellular invasion by suppressing nuclear factor-κB activity

  • Dilshara, Matharage Gayani;Kang, Chang-Hee;Choi, Yung Hyun;Kim, Gi-Young
    • BMB Reports
    • /
    • v.48 no.10
    • /
    • pp.559-564
    • /
    • 2015
  • We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-$\alpha$-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-$\alpha$-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-$\alpha$ significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-$\alpha$-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-$\alpha$-induced invasion of LNCaP cells. Compared to untreated controls, TNF-$\alpha$-stimulated LNCaP cells showed a significant increase in nuclear factor-${\kappa}B$ (NF-${\kappa}B$) luciferase activity. However, mangiferin treatment markedly decreased TNF-$\alpha$-induced NF-${\kappa}B$ luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-${\kappa}B$ subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-${\kappa}B$-mediated MMP-9 expression.

Antifungal Compound Produced by Bacillus sp. TBM912 (Bacillus sp. TBM912가 생산하는 항균물질)

  • 주우홍;한수지;최용락;정영기
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.193-197
    • /
    • 2004
  • A continuous enrichment culture procedure was used to isolate bacteria from various soil sources capable of suppressing large patch disease of turfgrass. Six isolates consistently suppressed large patch in turfgrass, and ranged in the spectrum of extracellular enzymes that they expressed. The best disease- suppressing isolate, TBM912, expressed protease, CMCase, and pectinase activity and inhibited the growth of Rhizectonin solani and Betrytis cinerea in vitro. Here we show that this strain also produces an antibiotic that was identified by TLC, SDS-PACE and HPLC analysis as lipopeptide.

The coat protein of Turnip crinkle virus is required a full-length to maintain suppressing activity to RNA silencing but no relation with eliciting resistance by N-terminal region in Arabidopsis.

  • Park, Chang-Won;Feng Qu;Tao Ren;T. Jack Morris
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.76.1-76
    • /
    • 2003
  • The coat protein (CP) of Turnip crinkle virus (TCV) is organized into 3 distinct domains, R domain (RNA-binding) connected by an arm, 5 domain and P domain. We have previously shown that the CP of TCV strongly suppresses RNA silencing, and have mapped N-terminal R domain of which is also the elicitor of resistance response in the Arabidopsis ecotype Di-17 carrying the HRT resistance gene. In order to map the region in the TCV CP that is responsible for silencing suppression, a series of CP mutants were constructed, transformed into Agrobacterium, coinfiltrated either with HC-Pro (the helper component proteinase of tobacco etch potyvirus) known as a suppressor of PTGS or GFP constructs into leaves of Nicotiana benthmiana expressing GFP transgenically. In the presence of HC-Pro, all CP mutants were well protected, accumulating mutant CP mRNAs and their proteins even 5 days post-infiltration (DPI). In the presence of GFP, some mutant constructs which showed the accumulation of CP mutants and GFP mRNAs at early stage but eventually degraded at 5 DPI. Only a mutant which carrying 4 amino acid deletion of R domain was tolerable to maintain suppressing activity, suggesting that the suppressing activity is not directly related with the eliciting activity. A transient assay also revealed that the mutants synthesized their proteins, suggesting that a full length of CP sequences and its intact structure are required to stabilize CP, which suppresses the RNA silencing.

  • PDF

강원도산 참당귀와 일본산 일당귀의 생리 활성 성분 탐색

  • Ham, Moon-Sun;Kim, Seung-Su;Hong, Jong-Su;Lee, Jin-Ha;Chung, Eul-Kwon;Park, Young-Shik;Lee, Hyeon-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.624-629
    • /
    • 1996
  • The ethanol extracts from Angelica gigas Nakai and Angelica acutiloba Kitagawa were fractionated to diethyl ether and aqueous partitions. Both partitions had strong antimutagenic effect on the MNNG (N-methyl-N-nitro-N-nitrosoguanidine) by Ames mutagenicity test. Diethyl ether fractions exhibited the greatest antimutagenic effect suppressing the mutagenicity of MNNG with inhibition of 78-80%. The ethanol extracts from both species showed the inhibitory effect on the growth of several human cancer cell lines. Especially, the diethyl ether fraction from ethanol extracts was most effective on human hepatocellular carcinoma cells, inhibiting 90-95% of cell growth. However, the aqueous fractions had least inhibition activity on many cancer cells. There was little cytotoxicity on human normal liver cell by ethanol extracts. Diethyl ether fraction from Angelica gigas Nakai ethanol extract had cytotoxicity less than 20% on human normal liver cells, compared with that from Angelica acutiloba Kitagawa ethanol exract. The adding of 0.5 (g/l) of diethyl ether fractions of Angelica gigas Nakai or Angelica acutiloba Kitagawa increased immune activity by enhacing human B and T cells up to three to four times. It was proven that diethyl ether fraction (0.7 g/1) from Angelica gigas Nakai could control blood pressure by suppressing angiotensin converting enzyme activity up to 98%. From TLC, it was appeared that both of diethyl ether partitions had umbelliferon, known to one of active substances from Angelica gigas Nakai and Angelica acutiloba Kitagawa.

  • PDF

S1P1 Regulates M1/M2 Polarization toward Brain Injury after Transient Focal Cerebral Ischemia

  • Gaire, Bhakta Prasad;Bae, Young Joo;Choi, Ji Woong
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.522-529
    • /
    • 2019
  • M1/M2 polarization of immune cells including microglia has been well characterized. It mediates detrimental or beneficial roles in neuroinflammatory disorders including cerebral ischemia. We have previously found that sphingosine 1-phospate receptor subtype 1 ($S1P_1$) in post-ischemic brain following transient middle cerebral artery occlusion (tMCAO) can trigger microglial activation, leading to brain damage. Although the link between $S1P_1$ and microglial activation as a pathogenesis in cerebral ischemia had been clearly demonstrated, whether the pathogenic role of $S1P_1$ is associated with its regulation of M1/M2 polarization remains unclear. Thus, this study aimed to determine whether $S1P_1$ was associated with regulation of M1/M2 polarization in post-ischemic brain. Suppressing $S1P_1$ activity with its functional antagonist, AUY954 (5 mg/kg, p.o.), attenuated mRNA upregulation of M1 polarization markers in post-ischemic brain at 1 day and 3 days after tMCAO challenge. Similarly, suppressing $S1P_1$ activity with AUY954 administration inhibited M1-polarizatioin-relevant $NF-{\kappa}B$ activation in post-ischemic brain. Particularly, $NF-{\kappa}B$ activation was observed in activated microglia of post-ischemic brain and markedly attenuated by AUY954, indicating that M1 polarization through $S1P_1$ in post-ischemic brain mainly occurred in activated microglia. Suppressing $S1P_1$ activity with AUY954 also increased mRNA expression levels of M2 polarization markers in post-ischemic brain, further indicating that $S1P_1$ could also influence M2 polarization in post-ischemic brain. Finally, suppressing $S1P_1$ activity decreased phosphorylation of M1-relevant ERK1/2, p38, and JNK MAPKs, but increased phosphorylation of M2-relevant Akt, all of which were downstream pathways following $S1P_1$ activation. Overall, these results revealed $S1P_1$-regulated M1/M2 polarization toward brain damage as a pathogenesis of cerebral ischemia.

Comparative Study of the Methanol and Water Extracts of Dangguisoo-san in Suppressing Inflammatory Reaction

  • Ryu, Ji Hyo;Kim, Hyungwoo;Cho, Su-In;Joo, Myungsoo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2017
  • Dangguisoo-san (DGSS), a traditional Korean herbal formula, has been prescribed to patients who suffer from various symptoms related with blood stagnation. Since inflammation can cause blood stagnation, we hypothesized that DGSS suppresses inflammation, relieving the symptoms associated with blood stagnation. In this study, given that DGSS is prepared in a mix of alcohol and water, we prepared the methanol (mDGSS) and water extract (wDGSS) of DGSS and compared their activities in suppressing inflammatory reaction. Western blot analyses show that mDGSS was more effective than wDGSS in activating Nrf2, a key factor that suppresses inflammation. Semi-quantitative RT-PCR shows that mDGSS activating Nrf2 resulted in the induction of Nrf2-dependent genes expression. However, mDGSS was not effective in suppressing the nuclear translocation of $NF-{\kappa}B$, a key factor that promotes inflammation, and the expression of $NF-{\kappa}B$-dependent genes such as TNF-a and IL-1b. When comparing with wDGSS, mDGSS was less effective in suppressing luciferase activity driven by $NF-{\kappa}B$. Therefore, our results show that mDGSS has the anti-inflammatory function by mainly activating Nrf2, while wDGSS does by both activating Nrf2 and suppressing $NF-{\kappa}B$. Our results suggest that preparing DGSS in a mix of water and methanol is a better way to achieve a strong anti-inflammatory efficacy of DGSS.

Identification of Endothelial Specific Region in the Intracellular Adhesion Molecule-2 (ICAM2) Promoter of Miniature Pig

  • Jang, Hoon;Jang, Won-Gu;Kim, Dong Un;Kim, Eun-Jung;Hwang, Sung Soo;Oh, Keon Bong;Lee, Jeong-Woong
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.207-212
    • /
    • 2012
  • The shortage of human organs for transplantation has induced the research on the possibility of using animal as porcine. However, pig to human transplantation as known as xeno-transplantation has major problem as immunorejection. Recently, the solutions of pig to human xenotransplantation are commonly mentioned as having a genetically modification which include alpha 1, 3 galatosyl transferase knockout (GTKO) and immune-suppressing gene transgenic model. Unfortunately, the expression level of transgenic gene is very low activity. Therefore, development of gene overexpression system is the most urgent issue. Also, the tissue specific overexpression system is very important. Because most blood vessels are endothelial cells, establishment of the endothelial-specific promoter is attractive candidates for the introduction of suppressing immunorejection. In this study, we focus the ICAM2 promoter which has endothelial-specific regulatory region. To detect the regulatory region of ICAM2 promoter, we cloned 3.7 kb size mini-pig ICAM2 promoter. We conduct serial deletion of 5' flanking region of mini-pig ICAM2 promoter then selected promoter size as 1 kb, 1.5 kb, 2 kb, 2.5 kb, and 3 kb. To analyze promoter activity, luciferase assay system was conducted among these vectors and compare endothelial activity with epithelial cells. The reporter gene assay revealed that ICAM2 promoter has critical activity in endothelial cells (CPAE) and 1 kb size of ICAM2 promoter activity was significantly increased. Taken together, our studies suggest that mini-pig ICMA2 promoter is endothelial cell specific overexpression promoter and among above all size of promoters, 1 kb size promoter is optimal candidate to overcome the vascular immunorejection in pig to human xenotransplantation.

Resistance Activity of Kyung-Ok-Ko on Thermal Stress in C. elegans (경옥고(瓊玉膏)의 열 스트레스에 의한 피부노화 억제 활성)

  • Won-Seok Jung;Sung-Young Cho;Hyun-Woo Cho;Hee-Woon Lee;Young‐IL Jeong;Hee-Taek Kim;Young-Bob Yu
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.37 no.1
    • /
    • pp.17-28
    • /
    • 2024
  • Objectives : This study was conducted to reveal the scientific mechanism of the anti-skin aging activity of Kyung-Ok-Ko(KOK), which is highly useful as a Korean traditional medicine and functional food. Methods : The skin wrinkle and aging inhibitory activity of KOK was confirmed through in vitro experiments of human dermal fibroblast neonatal cell(HDFn) and in vivo of C. elegans, and hairless mouse(SKH-1). Results : The amount of the C-terminus of the collagen precursor in the HDFn cell culture medium treated with KOK using an enzymes-linked immunoassay kit. The group treated with KOK 200㎍/㎖ was a 28.3% increase of collagen precursor compared to the control group. KOK showed inhibitory activity of MMP-1 compared to the control group at a concentration of 200㎍/㎖. In addition, KOK 200㎍/㎖ showed significant inhibitory activity of thermal stress and an oxidative stress compared to the control group in C. elegans. Furthermore, KOK showed a concentration-dependent(100mg/kg and 500mg/kg) anti-wrinkle formation effect in UV-irradiated hairless mouse(SKH-1). Additionally, when KOK was administered to UV-irradiated hairless mice, an increase in procollagen -1 and -3 genes expression was observed, and mmp-1 and mmp-9 genes, which increase collagen decomposition, decreased with the administration of KOK. Conclusions : The skin aging inhibition mechanism of Kyung-Ok-Ko(KOK) is presumed to be achieved through suppressing thermal stress and oxidative stress, suppressing mmp-1 and mmp-9 genes, and increasing procollagen-1 and procollagen-3.