Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.005

S1P1 Regulates M1/M2 Polarization toward Brain Injury after Transient Focal Cerebral Ischemia  

Gaire, Bhakta Prasad (College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University)
Bae, Young Joo (College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University)
Choi, Ji Woong (College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University)
Publication Information
Biomolecules & Therapeutics / v.27, no.6, 2019 , pp. 522-529 More about this Journal
Abstract
M1/M2 polarization of immune cells including microglia has been well characterized. It mediates detrimental or beneficial roles in neuroinflammatory disorders including cerebral ischemia. We have previously found that sphingosine 1-phospate receptor subtype 1 ($S1P_1$) in post-ischemic brain following transient middle cerebral artery occlusion (tMCAO) can trigger microglial activation, leading to brain damage. Although the link between $S1P_1$ and microglial activation as a pathogenesis in cerebral ischemia had been clearly demonstrated, whether the pathogenic role of $S1P_1$ is associated with its regulation of M1/M2 polarization remains unclear. Thus, this study aimed to determine whether $S1P_1$ was associated with regulation of M1/M2 polarization in post-ischemic brain. Suppressing $S1P_1$ activity with its functional antagonist, AUY954 (5 mg/kg, p.o.), attenuated mRNA upregulation of M1 polarization markers in post-ischemic brain at 1 day and 3 days after tMCAO challenge. Similarly, suppressing $S1P_1$ activity with AUY954 administration inhibited M1-polarizatioin-relevant $NF-{\kappa}B$ activation in post-ischemic brain. Particularly, $NF-{\kappa}B$ activation was observed in activated microglia of post-ischemic brain and markedly attenuated by AUY954, indicating that M1 polarization through $S1P_1$ in post-ischemic brain mainly occurred in activated microglia. Suppressing $S1P_1$ activity with AUY954 also increased mRNA expression levels of M2 polarization markers in post-ischemic brain, further indicating that $S1P_1$ could also influence M2 polarization in post-ischemic brain. Finally, suppressing $S1P_1$ activity decreased phosphorylation of M1-relevant ERK1/2, p38, and JNK MAPKs, but increased phosphorylation of M2-relevant Akt, all of which were downstream pathways following $S1P_1$ activation. Overall, these results revealed $S1P_1$-regulated M1/M2 polarization toward brain damage as a pathogenesis of cerebral ischemia.
Keywords
Transient middle cerebral artery occlusion (tMCAO); $S1P_1$; AUY954; M1/M2 polarization; Microglia;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gabriel, C., Justicia, C., Camins, A. and Planas, A. M. (1999) Activation of nuclear factor-kappaB in the rat brain after transient focal ischemia. Brain Res. Mol. Brain Res. 65, 61-69.   DOI
2 Gaire, B. P., Kwon, O. W., Park, S. H., Chun, K. H., Kim, S. Y., Shin, D. Y. and Choi, J. W. (2015) Neuroprotective effect of 6-paradol in focal cerebral ischemia involves the attenuation of neuroinflammatory responses in activated microglia. PLoS ONE 10, e0120203.   DOI
3 Gaire, B. P., Lee, C. H., Sapkota, A., Lee, S. Y., Chun, J., Cho, H. J., Nam, T. G. and Choi, J. W. (2018a) Identification of sphingosine 1-phosphate receptor subtype 1 (S1P1) as a pathogenic factor in transient focal cerebral ischemia. Mol. Neurobiol. 55, 2320-2332.   DOI
4 Gaire, B. P., Song, M. R. and Choi, J. W. (2018b) Sphingosine 1-phosphate receptor subtype 3 (S1P3) contributes to brain injury after transient focal cerebral ischemia via modulating microglial activation and their M1 polarization. J. Neuroinflammation 15, 284.   DOI
5 Gu, L., Huang, B., Shen, W., Gao, L., Ding, Z., Wu, H. and Guo, J. (2013) Early activation of nSMase2/ceramide pathway in astrocytes is involved in ischemia-associated neuronal damage via inflammation in rat hippocampi. J. Neuroinflammation 10, 109.
6 Harari, O. A. and Liao, J. K. (2010) NF-kappaB and innate immunity in ischemic stroke. Ann. N. Y. Acad. Sci. 1207, 32-40.   DOI
7 Hu, X., Leak, R. K., Shi, Y., Suenaga, J., Gao, Y., Zheng, P. and Chen, J. (2015) Microglial and macrophage polarization-new prospects for brain repair. Nat. Rev. Neurol. 11, 56-64.   DOI
8 Hu, X., Li, P., Guo, Y., Wang, H., Leak, R. K., Chen, S., Gao, Y. and Chen, J. (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43, 3063-3070.   DOI
9 Kim, G. S., Yang, L., Zhang, G., Zhao, H., Selim, M., McCullough, L. D., Kluk, M. J. and Sanchez, T. (2015) Critical role of sphingosine- 1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke. Nat. Commun. 6, 7893.   DOI
10 Jiang, B., Brecher, P. and Cohen, R. A. (2001) Persistent activation of nuclear factor-kappaB by interleukin-1beta and subsequent inducible NO synthase expression requires extracellular signal-regulated kinase. Arterioscler. Thromb. Vasc. Biol. 21, 1915-1920.   DOI
11 Kraft, P., Gob, E., Schuhmann, M. K., Gobel, K., Deppermann, C., Thielmann, I., Herrmann, A. M., Lorenz, K., Brede, M., Stoll, G., Meuth, S. G., Nieswandt, B., Pfeilschifter, W. and Kleinschnitz, C. (2013) FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection. Stroke 44, 3202-3210.   DOI
12 Lan, X., Han, X., Li, Q., Yang, Q. W. and Wang, J. (2017) Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat. Rev. Neurol. 13, 420-433.   DOI
13 Mattson, M. P. and Camandola, S. (2001) NF-kappaB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest. 107, 247-254.   DOI
14 Olson, C. M., Hedrick, M. N., Izadi, H., Bates, T. C., Olivera, E. R. and Anguita, J. (2007) p38 mitogen-activated protein kinase controls NF-kappaB transcriptional activation and tumor necrosis factor alpha production through RelA phosphorylation mediated by mitogen- and stress-activated protein kinase 1 in response to Borrelia burgdorferi antigens. Infect. Immun. 75, 270-277.   DOI
15 Mirendil, H., Thomas, E. A., De Loera, C., Okada, K., Inomata, Y. and Chun, J. (2015) LPA signaling initiates schizophrenia-like brain and behavioral changes in a mouse model of prenatal brain hemorrhage. Translational. Psychiatry 5, e541.   DOI
16 Moon, E., Han, J. E., Jeon, S., Ryu, J. H., Choi, J. W. and Chun, J. (2015) Exogenous S1P exposure potentiates ischemic stroke damage that is reduced possibly by inhibiting S1P receptor signaling. Mediators Inflamm. 2015, 492659.
17 Nayak, D., Huo, Y., Kwang, W. X., Pushparaj, P. N., Kumar, S. D., Ling, E. A. and Dheen, S. T. (2010) Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 166, 132-144.   DOI
18 Nazari, M., Keshavarz, S., Rafati, A., Namavar, M. R. and Haghani, M. (2016) Fingolimod (FTY720) improves hippocampal synaptic plasticity and memory deficit in rats following focal cerebral ischemia. Brain Res. Bull. 124, 95-102.   DOI
19 Noda, H., Takeuchi, H., Mizuno, T. and Suzumura, A. (2013) Fingolimod phosphate promotes the neuroprotective effects of microglia. J. Neuroimmunol. 256, 13-18.   DOI
20 Pan, Y., Zhang, X., Wang, Y., Cai, L., Ren, L., Tang, L., Wang, J., Zhao, Y., Wang, Y., Liu, Q., Li, X. and Liang, G. (2013) Targeting JNK by a new curcumin analog to inhibit NF-kB${\kappa}B$-mediated expression of cell adhesion molecules attenuates renal macrophage infiltration and injury in diabetic mice. PLoS ONE 8, e79084.   DOI
21 Patel, A. R., Ritzel, R., McCullough, L. D. and Liu, F. (2013) Microglia and ischemic stroke: a double-edged sword. Int. J. Physiol. Pathophysiol. Pharmacol. 5, 73-90.
22 Qin, C., Fan, W. H., Liu, Q., Shang, K., Murugan, M., Wu, L. J., Wang, W. and Tian, D. S. (2017) Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway. Stroke 48, 3336-3346.   DOI
23 Rothhammer, V., Kenison, J. E., Tjon, E., Takenaka, M. C., de Lima, K. A., Borucki, D. M., Chao, C. C., Wilz, A., Blain, M., Healy, L., Antel, J. and Quintana, F. J. (2017) Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proc. Natl. Acad. Sci. U.S A. 114, 2012-2017.
24 Tsai, H. C. and Han, M. H. (2016) Sphingosine-1-phosphate (S1P) and S1P signaling pathway: therapeutic targets in autoimmunity and inflammation. Drugs 76, 1067-1079.   DOI
25 Sapkota, A., Gaire, B. P., Cho, K. S., Jeon, S. J., Kwon, O. W., Jang, D. S., Kim, S. Y., Ryu, J. H. and Choi, J. W. (2017) Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation. PLoS ONE 12, e0171479.   DOI
26 Tam, W. Y. and Ma, C. H. (2014) Bipolar/rod-shaped microglia are proliferating microglia with distinct M1/M2 phenotypes. Sci. Rep. 4, 7279.   DOI
27 Thored, P., Heldmann, U., Gomes-Leal, W., Gisler, R., Darsalia, V., Taneera, J., Nygren, J. M., Jacobsen, S. E., Ekdahl, C. T., Kokaia, Z. and Lindvall, O. (2009) Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 57, 835-849.   DOI
28 Vergadi, E., Ieronymaki, E., Lyroni, K., Vaporidi, K. and Tsatsanis, C. (2017) Akt signaling pathway in macrophage activation and M1/M2 polarization. J. Immunol. 198, 1006-1014.   DOI
29 Wang, P., He, Y., Li, D., Han, R., Liu, G., Kong, D. and Hao, J. (2016) Class I PI3K inhibitor ZSTK474 mediates a shift in microglial/macrophage phenotype and inhibits inflammatory response in mice with cerebral ischemia/reperfusion injury. J. Neuroinflammation 13, 192.   DOI
30 Walker, D. G. and Lue, L. F. (2015) Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res. Ther. 7, 56.   DOI
31 Xia, C. Y., Zhang, S., Gao, Y., Wang, Z. Z. and Chen, N. H. (2015) Selective modulation of microglia polarization to M2 phenotype for stroke treatment. Int. Immunopharmacol. 25, 377-382.   DOI
32 Zhou, S., Zhu, W., Zhang, Y., Pan, S. and Bao, J. (2018) S100B promotes microglia M1 polarization and migration to aggravate cerebral ischemia. Inflamm. Res. 67, 937-949.   DOI
33 Xiong, X. Y., Liu, L. and Yang, Q. W. (2016) Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog. Neurobiol. 142, 23-44.   DOI
34 Zhang, C., Zhu, Y., Wang, S., Zachory Wei, Z., Jiang, M. Q., Zhang, Y., Pan, Y., Tao, S., Li, J. and Wei, L. (2018) Temporal gene expression profiles after focal cerebral ischemia in mice. Aging Dis. 9, 249-261.   DOI
35 Zhang, G., Yang, L., Kim, G. S., Ryan, K., Lu, S., O'Donnell, R. K., Spokes, K., Shapiro, N., Aird, W. C., Kluk, M. J., Yano, K. and Sanchez, T. (2013) Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation. Blood 122, 443-455.
36 Byles, V., Covarrubias, A. J., Ben-Sahra, I., Lamming, D. W., Sabatini, D. M., Manning, B. D. and Horng, T. (2013) The TSC-mTOR pathway regulates macrophage polarization. Nat. Commun. 4, 2834.   DOI
37 Zhu, Z., Fu, Y., Tian, D., Sun, N., Han, W., Chang, G., Dong, Y., Xu, X., Liu, Q., Huang, D., and Shi, F. D. (2015) Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: a pilot trial. Circulation 132, 1104-1112.   DOI
38 Aoki, M., Aoki, H., Ramanathan, R., Hait, N. C. and Takabe, K. (2016) Corrigendum to "sphingosine-1-phosphate signaling in immune cells and inflammation: roles and therapeutic potential". Mediators Inflamm. 2016, 2856829.
39 Block, M. L., Zecca, L. and Hong, J. S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69.   DOI
40 Butovsky, O., Ziv, Y., Schwartz, A., Landa, G., Talpalar, A. E., Pluchino, S., Martino, G. and Schwartz, M. (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell. Neurosci. 31, 149-160.   DOI
41 Cherry, J. D., Olschowka, J. A. and O'Banion, M. K. (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 11, 98.   DOI
42 Chi, H. (2011) Sphingosine-1-phosphate and immune regulation: trafficking and beyond. Trends. Pharmacol. Sci. 32, 16-24.   DOI
43 Choi, J. W. and Chun, J. (2013) Lysophospholipids and their receptors in the central nervous system. Biochim. Biophys. Acta 1831, 20-32.   DOI
44 Cyster, J. G. and Schwab, S. R. (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30, 69-94.   DOI
45 Czech, B., Pfeilschifter, W., Mazaheri-Omrani, N., Strobel, M. A., Kahles, T., Neumann-Haefelin, T., Rami, A., Huwiler, A. and Pfeilschifter, J. (2009) The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochem. Biophys. Res. Commun. 389, 251-256.   DOI
46 Fu, Y., Hao, J., Zhang, N., Ren, L., Sun, N., Li, Y. J., Yan, Y., Huang, D., Yu, C. and Shi, F. D. (2014) Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 71, 1092-1101.   DOI
47 Doll, D. N., Barr, T. L. and Simpkins, J. W. (2014) Cytokines: their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis. 5, 294-306.   DOI