• 제목/요약/키워드: supported Ni catalysts

검색결과 81건 처리시간 0.019초

Production of Hydrogen and Carbon Nanotubes from Catalytic Decomposition of Methane over Ni:Cu/Alumina Modified Supported Catalysts

  • Hussain, Tajammul;Mazhar, Mohammed;Iqbal, Sarwat;Gul, Sheraz;Hussain, Muzammil;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권7호
    • /
    • pp.1119-1126
    • /
    • 2007
  • Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.

나노탄소섬유를 이용한 다공성 탄소담체의 제조와 반응 특성 (Preparation of Porous Carbon Support Using Carbon Nanofiber)

  • 김명수;정상원;우원준;임연수
    • 한국세라믹학회지
    • /
    • 제36권5호
    • /
    • pp.504-512
    • /
    • 1999
  • The high-quality carbon nanofibers were prepared by chemical vapor deposition of gas mixtures of CO-H2 and C3H8-H2 over Fe-Cu and Ni-Cu bimetallic catalysts. The yield and structure of carbon nanofiber produced were altered by the change of catalyst composition and reaction temperature. The high yields were obtained around 500$^{\circ}C$ with e-Cu catalyst and around 700-750$^{\circ}C$ with Ni-Cu catalyst and the relatively higher yields were obtained with the bimetallic catalyst containing 50-90% of Ni and Fe respectively in comparison with the pure metals. The carbon nanofibers produced over the Fe-Cu catalyst at around 500$^{\circ}C$ with the maximum yields had the highest surface ares of 160-200 m2/g around 650$^{\circ}C$ which was slightly lower than the temperature for maximum yields. In order to examine the characteristics of carbon nanofibers as catalyst support Ni and Co metals were supporte on the carbon nanofibers and CO hydrogenation reaction was performed with the catalysts. The particle size distribution of Ni and Co supported over the carbon nanofibers were 6-15 nm and the CO hydrogenation reaction rate with the carbon-nanofiber supported catalysts was much higher than that over the other supports.

  • PDF

Ni Nanoparticles Supported on MIL-101 as a Potential Catalyst for Urea Oxidation in Direct Urea Fuel Cells

  • Tran, Ngan Thao Quynh;Gil, Hyo Sun;Das, Gautam;Kim, Bo Hyun;Yoon, Hyon Hee
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.387-391
    • /
    • 2019
  • A highly porous Ni@MIL-101catalyst for urea oxidation was synthesized by anchoring Ni into a Cr-based metal-organic framework, MIL-101, particles. The morphology, structure, and composition of as synthesized Ni@MIL-101 catalysts were characterized by X-Ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electro-catalytic activity of the Ni@MIL-101catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the structure of Ni@MIL-101 retained that of the parent MIL-101, featuring a high BET surface area of $916m^2g^{-1}$, and thus excellent electro-catalytic activity for urea oxidation. A $urea/H_2O_2$ fuel cell with Ni@MIL-101 as anode material exhibited an excellent performance with maximum power density of $8.7mWcm^{-2}$ with an open circuit voltage of 0.7 V. Thus, this work shows that the highly porous three-dimensional Ni@MIL-101 catalysts can be used for urea oxidation and as an efficient anode material for urea fuel cells.

고 탄화수소 개질을 위한 Pt-Ru, Pt-Ni 이원금속촉매에 관한 연구 (Pt-Ru, Pt-Ni bi-metallic catalysts for heavy hydrocarbon reforming)

  • 이상호;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.97.2-97.2
    • /
    • 2011
  • Pt-Ru and Pt-Ni bimetallic catalysts were prepared and tested for heavy hydrocarbon reforming. Metals were supported on CGO($Ce_{0.8}Gd_{0.2}O_{2.0-x}$) by incipient wetness method. The prepared catalysts were characterized by Temperature programmed reduction(TPR). Oxidative steam reforming of n-dodecane was conducted to compare the activity of the catalysts. The reforming temperature was varied from $500^{\circ}C$ to $800^{\circ}C$ at fixed $O_2$/C of 0.3, $H_2O$/C of 3.0 and GHSV of 5,000/h.Reduction peaks of metal oxide, surface CGO and bulk CGO were detected. Reduction temperature of metal oxide decreased over the bi-metallic catalysts. It is considered that interaction between metals leads to decrease interaction between metal and oxygen. On the other hands, reduction temperatures of surface CGO were dectected in the order of Pt-Ru > Pt-Ni > Pt. low reduction temperatures of surface CGO indicates the low activation energy for oxygen ion conduction to metal. Oxygen ion conduction is known as de-coking mechanism of ionic conducting supports such as CGO. In activity test, fuel conversion was in the same order of Pt-Ru > Pt-Ni > Pt. Especially, 100% of fuel conversion was obtained over Pt-Ru catalysts at $500^{\circ}C$.

  • PDF

NiSO4 Supported on FeO-promoted ZrO2 Catalyst for Ethylene Dimerization

  • Sohn, Jong-Rack;Kim, Young-Tae;Shin, Dong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1749-1756
    • /
    • 2005
  • The $NiSO_4$ supported on FeO-promoted $ZrO_2$ catalysts were prepared by the impregnation method. FeOpromoted $ZrO_2$ was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and iron nitrate solution followed by adding an aqueous ammonia solution. The addition of nickel sulfate (or FeO) to $ZrO_2$ shifted the phase transition of $ZrO_2$ (from amorphous to tetragonal) to higher temperatures because of the interaction between nickel sulfate (or FeO) and $ZrO_2$. 10-$NiSO_4$/5-FeO-$ZrO_2$ containing 10 wt % $NiSO_4$ and 5 mol % FeO, and calcined at 500 ${^{\circ}C}$ exhibited a maximum catalytic activity for ethylene dimerization. $NiSO_4$/FeO-$ZrO_2$ catalysts was very effective for ethylene dimerization even at room temperature, but FeO-$ZrO_2$ without $NiSO_4$ did not exhibit any catalytic activity at all. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The addition of FeO up to 5 mol % enhanced the acidity, surface area, thermal property, and catalytic activities of catalysts gradually, due to the interaction between FeO and $ZrO_2$ and due to consequent formation of Fe-O-Zr bond.

Co-Ni-P-B/Ni foam 촉매에서 $NaBH_4$ 가수분해를 통한 수소 발생 (Hydrogen Generation from $NaBH_4$ Hydrolysis on Co-Ni-P-B/Ni Foam Catalyst)

  • 박대일;김태규
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.383-389
    • /
    • 2010
  • Co-B, Co-P-B, Co-Ni-B and Co-Ni-P-B catalysts supported on Ni foam were prepared using electroless plating in the present study. The surface morphology of the catalysts/Ni foam was observed using SEM and EDS analysis. The Co-Ni-P-B/Ni foam catalyst showed the superior performance on hydrogen generation due to the uniform formation of catalyst particles on the Ni foam surface. The characteristics of hydrogen generation with Co-Ni-P-B/Ni foam catalyst was investigated at the variety of $NaBH_4$ and NaOH concentrations. Durability test was performed, resulting in the stable hydrogen generation for 6 hours.

SBA-15 Supported Fe, Ni, Fe-Ni Bimetallic Catalysts for Wet Oxidation of Bisphenol-A

  • Mayani, Suranjana V.;Mayani, Vishal J.;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3535-3541
    • /
    • 2014
  • Bisphenol A is considered as pollutant, because it is toxic and hazardous to living organisms even at very low concentrations. Biological oxidation used for removing this organic from waste water is not suitable and consequently application of catalytic wet oxidation has been considered as one of the best options for treating bisphenol A. We have developed Fe/SBA-15, Ni/SBA-15 and Fe-Ni/SBA-15 as heterogeneous catalysts using the advanced impregnation method for oxidation of bisphenol A in water. The catalysts were characterized with physico-chemical characterization methods such as, powder X-ray diffraction (PXRD), FT-IR measurements, N2 adsorption-desorption isotherm, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. This work illustrates activity of the catalysts for heterogeneous catalytic degradation reaction revealed with excellent conversion and recyclability. The degradation products identified were not persistent pollutants. GC-MS analysis identified the products: 2,4-hexadienedioic acid, 2,4-pentadienic acid and isopropanol or acetic acid. The leachability study indicated that the catalysts release very little metals to water. Therefore, the possibility of water contamination through metal leaching was almost negligible.

Pyridine의 수첨탈질 반응에 있어서 텅스텐 촉매에 대한 조촉매의 영향 (Influence of Promoters on the Tungsten - Catalysts in Hydrodenitrogenation of Pyridine)

  • 신동헌;박종희;김경림
    • 한국대기환경학회지
    • /
    • 제3권1호
    • /
    • pp.1-12
    • /
    • 1987
  • A series of supported sulfided Ni-W/$\gamma-Al_2O_3$ and Co-W/$\gamma-Al_2O_3$ catalysts with different nickel and cobalt contents were studied in the hydrodenitrogenation of pyridine dissolved in n-heptane. The ranges of experimental conditions were at the temperatures between 453 and 753 K, and the pressures between 30 and 50 Bar. The catalytic activities with different nickel and cobalt contents were shown to be maximum at Ni/Ni+W = 0.2 - 0.3, Co/Co+W = 0.3 - 0.4. Pyridine conversion increased with pressure and temperature and the step of piperidine formation was found to be irreversible. The reaction orders in Ni-W/$\gamma-Al_2O_3$ and Co-W/$\gamma-Al_2O_3$ catalysts were the first with respect to pyridine and reaction rate constants decreased with increase of initial pyridine concentration and their activation energies were 12.98 and 9.23 kcal/mol, respectively.

  • PDF

NiPtMo계 촉매 담체의 산특성 및 수소첨가 탈황반응 (The Hydrodesulfurization over NiPtMo Catalysts and Acidic Characterization of Supports)

  • 김문찬;이원묵;김경림
    • 한국대기환경학회지
    • /
    • 제10권4호
    • /
    • pp.281-288
    • /
    • 1994
  • The hydrodesulfurization (DBT) were Peformed over NiPtMo catalysts supported on HZSM-5, LaY and ${\gamma}$- $Al_2$O$_3$under high H$_2$ pressure. And the acidities of these catalysts were characterized by using TGA and DSC. The result showed that the order of the acid strength for prepared supports was HZSM -5>LaY>${\gamma}$- A1$_2$O$_3$. For the acid amount we obtained the same result for the acid strength The acid strength and the acid amount mainly depended on the kinds of supports whose acid site were strong or not The activity of the hydrodesulfurization decreased for catalysts which had strong acid sites. The origin of acid site was Bronsted in NH50 and NY catalysts And it was Lewis in NA catalyst The order of desorption activation energy for Pyridine was NH50>NY>NA. And the result was the same for thiophene. The activity of the hydrodesulfurization decreased for catalysts which had strong acid sites. The conversion of DBT over NA catalyst was higher than NH and NY catalysts.

  • PDF

Investigation of Nanometals (Ni and Sn) in Platinum-Based Ternary Electrocatalysts for Ethanol Electro-oxidation in Membraneless Fuel Cells

  • Ponmani, K.;Kiruthika, S.;Muthukumaran, B.
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권3호
    • /
    • pp.95-105
    • /
    • 2015
  • In the present work, Carbon supported Pt100, Pt80Sn20, Pt80Ni20 and Pt80Sn10Ni10 electrocatalysts with different atomic ratios were prepared by ethylene glycol-reduction method to study the electro-oxidation of ethanol in membraneless fuel cell. The electrocatalysts were characterized in terms of structure, morphology and composition by using XRD, TEM and EDX techniques. Transmission electron microscopy measurements revealed a decrease in the mean particle size of the catalysts for the ternary compositions. The electrocatalytic activities of Pt100/C, Pt80Sn20/C, Pt80Ni20/C and Pt80Sn10Ni10/C catalysts for ethanol oxidation in an acid medium were investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results showed that addition of Ni to Pt/C and Pt-Sn/C catalysts significantly shifted the onset of ethanol and CO oxidations toward lower potentials. The single membraneless ethanol fuel cell performances of the Pt80Sn10Ni10/C, Pt80Sn20/C and Pt80Ni20/C anode catalysts were evaluated at room temperature. Among the catalysts investigated, the power density obtained for Pt80Sn10Ni10/C (37.77 mW/cm2 ) catalyst was higher than that of Pt80Sn20/C (22.89 mW/cm2 ) and Pt80Ni20/C (16.77 mW/ cm2 ), using 1.0 M ethanol + 0.5 M H2SO4 as anode feed and 0.1 M sodium percarbonate + 0.5 M H2SO4 as cathode feed.