DOI QR코드

DOI QR Code

NiSO4 Supported on FeO-promoted ZrO2 Catalyst for Ethylene Dimerization

  • Sohn, Jong-Rack (Department of Applied Chemistry, Engineering College, Kyungpook National University) ;
  • Kim, Young-Tae (Department of Applied Chemistry, Engineering College, Kyungpook National University) ;
  • Shin, Dong-Cheol (Department of Applied Chemistry, Engineering College, Kyungpook National University)
  • Published : 2005.11.20

Abstract

The $NiSO_4$ supported on FeO-promoted $ZrO_2$ catalysts were prepared by the impregnation method. FeOpromoted $ZrO_2$ was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and iron nitrate solution followed by adding an aqueous ammonia solution. The addition of nickel sulfate (or FeO) to $ZrO_2$ shifted the phase transition of $ZrO_2$ (from amorphous to tetragonal) to higher temperatures because of the interaction between nickel sulfate (or FeO) and $ZrO_2$. 10-$NiSO_4$/5-FeO-$ZrO_2$ containing 10 wt % $NiSO_4$ and 5 mol % FeO, and calcined at 500 ${^{\circ}C}$ exhibited a maximum catalytic activity for ethylene dimerization. $NiSO_4$/FeO-$ZrO_2$ catalysts was very effective for ethylene dimerization even at room temperature, but FeO-$ZrO_2$ without $NiSO_4$ did not exhibit any catalytic activity at all. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The addition of FeO up to 5 mol % enhanced the acidity, surface area, thermal property, and catalytic activities of catalysts gradually, due to the interaction between FeO and $ZrO_2$ and due to consequent formation of Fe-O-Zr bond.

Keywords

References

  1. Pae, Y. I.; Lee, S. H.; Sohn, J. R. Catal. Lett. 2005, 99, 241 https://doi.org/10.1007/s10562-005-2130-8
  2. Bernardi, F.; Bottoni, A.; Rossi, I. J. Am. Chem. Soc. 1998, 120, 7770 https://doi.org/10.1021/ja980604r
  3. Sohn, J. R.; Ozaki, A. J. Catal. 1979, 59, 303 https://doi.org/10.1016/S0021-9517(79)80034-2
  4. Sohn, J. R.; Ozaki, A. J. Catal. 1980, 61, 291 https://doi.org/10.1016/0021-9517(80)90370-X
  5. Wendt, G.; Fritsch, E.; Schollner, R.; Siegel, H. Z. Anorg. Allg. Chem. 1980, 467, 51 https://doi.org/10.1002/zaac.19804670107
  6. Sohn, J. R.; Shin, D. C. J. Catal. 1996, 160, 314 https://doi.org/10.1006/jcat.1996.0150
  7. Berndt, G. F.; Thomson, S. J.; Webb, G. J. J. Chem. Soc. Faraday Trans. 1983, 179, 195
  8. Sohn, J. R.; Lim, J. S. Bull. Korean Chem. Soc. 2005, 26, 1029 https://doi.org/10.5012/bkcs.2005.26.7.1029
  9. Sohn, J. R.; Park, W. C.; Kim, H. W. J. Catal. 2002, 209, 69 https://doi.org/10.1006/jcat.2002.3581
  10. Sohn, J. R.; Park, W. C. Bull. Korean Chem. Soc. 2000, 21, 1063
  11. Urabe, K.; Koga, M.; Izumi, Y. J. Chem. Soc., Chem. Commun. 1989, 807
  12. Wendt, G.; Hentschel, D.; Finster, J.; Schollner, R. J. Chem. Soc Faraday Trans. 1983, 179, 2013
  13. Kimura, K.; Ozaki, A. J. Catal. 1964, 3, 395 https://doi.org/10.1016/0021-9517(64)90142-3
  14. Maruya, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1973, 46, 351 https://doi.org/10.1246/bcsj.46.351
  15. Hartmann, M.; Poppl, A.; Kevan, L. J. Phys. Chem. 1996, 100, 9906 https://doi.org/10.1021/jp9602181
  16. Elev, I. V.; Shelimov, B. N.; Kazansky, V. B. J. Catal. 1984, 89, 47070 https://doi.org/10.1016/0021-9517(84)90323-3
  17. Choo, H.; Kevan, L. J. Phys. Chem. B 2001, 105, 6353 https://doi.org/10.1021/jp0106909
  18. Sohn, J. R.; Kim, H. J. J. Catal. 1986, 101, 428 https://doi.org/10.1016/0021-9517(86)90270-8
  19. Sohn, J. R.; Lee, S. Y. Appl. Catal. A: Gen. 1997, 164, 127 https://doi.org/10.1016/S0926-860X(97)00163-4
  20. Sohn, J. R.; Kim, H. W.; Park, M. Y.; Park, E. H.; Kim, J. T.; Park, S. E. Appl. Catal. 1995, 128, 127 https://doi.org/10.1016/0926-860X(95)00057-7
  21. Hsu, C. Y.; Heimbuch, C. R.; Armes, C. T.; Gates, B. C. J. Chem. Soc., Chem. Commun. 1992, 1645
  22. Cheung, T. K.; Gates, B. C. J. Catal. 1997, 168, 522 https://doi.org/10.1006/jcat.1997.1654
  23. Adeeva, V.; de Haan, H. W.; Janchen, J.; Lei, G. D.; Schunemann, V.; van de Ven, L. J. M.; Sachtler, W. M. H.; van Santen, R. A. J. Catal. 1995, 151, 364 https://doi.org/10.1006/jcat.1995.1039
  24. Wan, K. T.; Khouw, C. B.; Davis, M. E. J. Catal. 1996, 158, 311 https://doi.org/10.1006/jcat.1996.0030
  25. Song, X.; Reddy, K. R.; Sayari, A. J. Catal. 1996, 161, 206 https://doi.org/10.1006/jcat.1996.0178
  26. Coelho, M. A.; Resasco, D. E.; Sikabwe, E. C.; White, R. L. Catal. Lett. 1995, 32, 253 https://doi.org/10.1007/BF00813219
  27. Hosoi, T.; Shimadzu, T.; Ito, S.; Baba, S.; Takaoka, H.; Imai, T.; Yokoyama, N. Prepr. Symp. Div. Petr. Chem.; American Chemical Society: Los Angeles, CA, 1988; p 562
  28. Ebitani, K.; Konishi, J.; Hattori, H. J. Catal. 1991, 130, 257 https://doi.org/10.1016/0021-9517(91)90108-G
  29. Signoretto, M.; Pinna, F.; Strukul, G.; Chies, P.; Cerrato, G.; Ciero, S. D.; Morterra, C. J. Catal. 1997, 167, 522 https://doi.org/10.1006/jcat.1997.1575
  30. Hua, W.; Xia, Y.; Yue, Y.; Gao, Z. J. Catal. 2000, 196, 104 https://doi.org/10.1006/jcat.2000.3032
  31. Moreno, J. A.; Poncelet, G. J. Catal. 2001, 203, 153
  32. Sohn, J. R.; Cho, E. S. Appl. Catal. A: Gen. 2005, 282, 147 https://doi.org/10.1016/j.apcata.2004.12.007
  33. Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. New Solid Acids and Bases; Kodansha-Elsevier: Tokyo, 1989; p 185
  34. Arata, K.; Hino, M.; Yamagata, N. Bull. Chem. Soc. Jpn. 1990, 63, 244 https://doi.org/10.1246/bcsj.63.244
  35. Sohn, J. R.; Park, E. H. J. Ind. Eng. Chem. 1998, 4, 197
  36. Sohn, J. R.; Park, W. C. Appl. Catal. A: Gen. 2002, 230, 11 https://doi.org/10.1016/S0926-860X(01)00952-8
  37. Sohn, J. R.; Cho, S. G.; Pae, Y. I.; Hayashi, S. J. Catal. 1996, 159, 1709 https://doi.org/10.1006/jcat.1996.0076
  38. Sohn, J. R.; Lee, S. H.; Park, W. C.; Kim, H. W. Bull. Korean Chem. Soc. 2004, 25, 657 https://doi.org/10.5012/bkcs.2004.25.5.657
  39. Sohn, J. R.; Seo, D. H.; Lee, S. H. J. Ind. Eng. Chem. 2004, 10, 309
  40. Sohn, J. R.; Kim, J. G.; Kwon, T. D.; Park, E. H. Langmuir 2002, 18, 1666 https://doi.org/10.1021/la011304h
  41. Saur, O.; Bensitel, M.; Saad, A. B. M.; Lavalley, J. C.; Tripp, C. P.; Morrow, B. A. J. Catal. 1986, 99, 104 https://doi.org/10.1016/0021-9517(86)90203-4
  42. Yamaguchi, T. Appl. Catal. 1990, 61, 25
  43. Morrow, B. A.; McFarlane, R. A.; Lion, M.; Lavalley, J. C. J. Catal. 1987, 107, 232 https://doi.org/10.1016/0021-9517(87)90288-0
  44. Sohn, J. R.; Park, W. C. Appl. Catal. A: Gen. 2003, 239, 269 https://doi.org/10.1016/S0926-860X(02)00392-7
  45. Siriwardane, R. V.; Poston, J. A.; Fisher, Jr. E. P.; Shen, M. S.; Miltz, A. L. Appl. Surf. Sci. 1999, 152, 219 https://doi.org/10.1016/S0169-4332(99)00319-0
  46. Sohn, J. R. J. Ind. Eng. Chem. 2004, 10, 1
  47. Satsuma, A.; Hattori, A.; Mizutani, K.; Furuta, A.; Miyamoto, A.; Hattori, T.; Murakami, Y. J. Phys. Chem. 1988, 92, 6052 https://doi.org/10.1021/j100332a042
  48. Sohn, J. R.; Lee, S. H. Appl. Catal. A: Gen. 2004, 266, 89 https://doi.org/10.1016/j.apcata.2004.01.034
  49. Arata, K. Adv. Catal. 1990, 37, 165 https://doi.org/10.1016/S0360-0564(08)60365-X
  50. Olah, F. G. A.; Prakash, G. K. S.; Sommer, J. Science 1979, 206, 13 https://doi.org/10.1126/science.206.4414.13
  51. Sohn, J. R.; Park, E. H.; Kim, H. W. J. Ind. Eng. Chem. 1999, 5, 253
  52. Sohn, J. R.; Ryu, S. G. Langmuir 1993, 9, 126 https://doi.org/10.1021/la00025a029
  53. Jin, T.; Yamaguchi, T.; Tananbe, K. J. Phys. Chem. 1986, 90, 4794 https://doi.org/10.1021/j100411a017
  54. Tanabe, K. Solid Acids and Bases; Kodansha: Tokyo, 1970; p 103
  55. Moreno, J. A.; Poncelet, G. J. Catal. 2001, 203, 453 https://doi.org/10.1006/jcat.2001.3324
  56. Reddy, B. M.; Sreekanth, P. M.; Yamada, Y.; Kobayashi, T. J. Mol. Catal. A: Chem. 2005, 227, 81 https://doi.org/10.1016/j.molcata.2004.10.011
  57. Xia, Y.; Hua, W.; Gao, Z. Appl. Catal. A: Gen. 1999, 185, 293 https://doi.org/10.1016/S0926-860X(99)00176-3
  58. Gao, Z.; Xia, Y.; Hua, W.; Miao, C. Topics Catal. 1998, 6, 101 https://doi.org/10.1023/A:1019122608037

Cited by

  1. Synthesis and characterization of Hf(SO4)2(H2O)4 and Hf(SeO3)(SeO4)(H2O)4 vol.124, pp.3, 2016, https://doi.org/10.1007/s10973-016-5275-3
  2. Nanosized iron and nickel oxide zirconia supported catalysts for benzylation of benzene: Role of metal oxide support interaction vol.486, pp.None, 2014, https://doi.org/10.1016/j.apcata.2014.08.012